Processes and structures on approximation spaces
Algebra i logika, Tome 56 (2017) no. 1, pp. 93-109

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce the concept of a computability component on an admissible set and consider minimal and maximal computability components on hereditarily finite superstructures as well as jumps corresponding to these components. It is shown that the field of real numbers $\Sigma$-reduces to jumps of the maximal computability component on the least admissible set $\mathbb{HF}(\varnothing)$. Thus we obtain a result that, in terms of $\Sigma$-reducibility, connects real numbers, conceived of as a structure, with real numbers, conceived of as an approximation space. Also we formulate a series of natural open questions.
Keywords: computability theory, admissible sets, approximation spaces, constructive models, computable analysis, hyperarithmetical computability.
@article{AL_2017_56_1_a3,
     author = {A. I. Stukachev},
     title = {Processes and structures on approximation spaces},
     journal = {Algebra i logika},
     pages = {93--109},
     publisher = {mathdoc},
     volume = {56},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2017_56_1_a3/}
}
TY  - JOUR
AU  - A. I. Stukachev
TI  - Processes and structures on approximation spaces
JO  - Algebra i logika
PY  - 2017
SP  - 93
EP  - 109
VL  - 56
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2017_56_1_a3/
LA  - ru
ID  - AL_2017_56_1_a3
ER  - 
%0 Journal Article
%A A. I. Stukachev
%T Processes and structures on approximation spaces
%J Algebra i logika
%D 2017
%P 93-109
%V 56
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2017_56_1_a3/
%G ru
%F AL_2017_56_1_a3
A. I. Stukachev. Processes and structures on approximation spaces. Algebra i logika, Tome 56 (2017) no. 1, pp. 93-109. http://geodesic.mathdoc.fr/item/AL_2017_56_1_a3/