Algebras of distributions for binary formulas in countably categorical weakly $o$-minimal structures
Algebra i logika, Tome 56 (2017) no. 1, pp. 20-54.

Voir la notice de l'article provenant de la source Math-Net.Ru

Algebras of distributions for binary isolating formulas over a type for countably categorical weakly o-minimal theories are described, and the generalized commutative property of an algebra of distributions for binary isolating formulas over a pair of types for countably categorical weakly ominimal theories is characterized in terms of convexity rank.
Keywords: countably categorical weakly $o$-minimal theory, convexity rank, algebra of distributions for binary isolating formulas, generalized commutative monoid.
@article{AL_2017_56_1_a1,
     author = {D. Yu. Emel'yanov and B. Sh. Kulpeshov and S. V. Sudoplatov},
     title = {Algebras of distributions for binary formulas in countably categorical weakly $o$-minimal structures},
     journal = {Algebra i logika},
     pages = {20--54},
     publisher = {mathdoc},
     volume = {56},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2017_56_1_a1/}
}
TY  - JOUR
AU  - D. Yu. Emel'yanov
AU  - B. Sh. Kulpeshov
AU  - S. V. Sudoplatov
TI  - Algebras of distributions for binary formulas in countably categorical weakly $o$-minimal structures
JO  - Algebra i logika
PY  - 2017
SP  - 20
EP  - 54
VL  - 56
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2017_56_1_a1/
LA  - ru
ID  - AL_2017_56_1_a1
ER  - 
%0 Journal Article
%A D. Yu. Emel'yanov
%A B. Sh. Kulpeshov
%A S. V. Sudoplatov
%T Algebras of distributions for binary formulas in countably categorical weakly $o$-minimal structures
%J Algebra i logika
%D 2017
%P 20-54
%V 56
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2017_56_1_a1/
%G ru
%F AL_2017_56_1_a1
D. Yu. Emel'yanov; B. Sh. Kulpeshov; S. V. Sudoplatov. Algebras of distributions for binary formulas in countably categorical weakly $o$-minimal structures. Algebra i logika, Tome 56 (2017) no. 1, pp. 20-54. http://geodesic.mathdoc.fr/item/AL_2017_56_1_a1/

[1] D. Macpherson, D. Marker, Ch. Steinhorn, “Weakly $o$-minimal structures and real closed fields”, Trans. Am. Math. Soc., 352:12 (2000), 5435–5483 | DOI | MR | Zbl

[2] S. V. Sudoplatov, Classification of countable models of complete theories, Novosibirsk State Tech. Univ., Novosibirsk, 2014

[3] I. V. Shulepov, S. V. Sudoplatov, “Algebras of distributions for isolating formulas of a complete theory”, Sib. elektron. matem. izv., 11 (2014), 380–407 http://semr.math.nsc.ru/v11/p380-407.pdf | MR | Zbl

[4] A. Pillay, “Countable models of stable theories”, Proc. Am. Math. Soc., 89:4 (1983), 666–672 | DOI | MR | Zbl

[5] B. S. Baizhanov, “Orthogonality of one-types in weakly $o$-minimal theories”, Algebra and model theory, v. 2, eds. A. G. Pinus et al., Novosibirsk State Tech. Univ., Novosibirsk, 1999, 3–28 | MR

[6] B. S. Baizhanov, B. Sh. Kulpeshov, “On behaviour of 2-formulas in weakly $o$-minimal theories”, Mathematical logic in Asia, Proc. the 9th Asian logic conf. (Novosibirsk, Russia, August 16–19, 2005), eds. S. S. Goncharov et al., World Scientific, Hackensack, NJ, 2006, 31–40 | DOI | MR | Zbl

[7] S. V. Sudoplatov, “Gipergrafy prostykh modelei i raspredeleniya schëtnykh modelei malykh teorii”, Fundament. i prikl. matem., 15:7 (2009), 179–203

[8] B. S. Baizhanov, S. V. Sudoplatov, V. V. Verbovskiy, “Conditions for non-symmetric relations of semi-isolation”, Sib. elektron. matem. izv., 9 (2012), 161–184 http://semr.math.nsc.ru/v9/p161-184.pdf | MR | Zbl

[9] S. V. Sudoplatov, “Algebras of distributions for semi-isolating formulas of a complete theory”, Sib. elektron. matem. izv., 11 (2014), 408–433 http://semr.math.nsc.ru/v11/p408-433.pdf | MR | Zbl

[10] S. V. Sudoplatov, “Algebras of distributions for binary semi-isolating formulas for families of isolated types and for countably categorical theories”, Int. Math. Forum, 9:21 (2014), 1029–1033 | DOI | MR

[11] B. S. Baizhanov, “One-types in weakly $o$-minimal theories”, Proc. Inf. Control Problems Inst., Almaty, 1996, 75–88

[12] B. Herwig, H. D. Macpherson, G. Martin, A. Nurtazin, J. K. Truss, “On $\aleph_0$-categorical weakly $o$-minimal structures”, Ann. Pure Appl. Logic, 101:1 (2000), 65–93 | DOI | MR | Zbl

[13] B. Sh. Kulpeshov, “Weakly $o$-minimal structures and some of their properties”, J. Symb. Log., 63:4 (1998), 1511–1528 | DOI | MR | Zbl

[14] B. Sh. Kulpeshov, “Criterion for binarity of $\aleph_0$-categorical weakly $o$-minimal theories”, Ann. Pure Appl. Logic, 145:3 (2007), 354–367 | DOI | MR | Zbl

[15] B. S. Baizhanov, “Expansion of a model of a weakly $o$-minimal theory by a family of unary predicates”, J. Symb. Log., 66:3 (2001), 1382–1414 | DOI | MR | Zbl

[16] B. Sh. Kulpeshov, “Schetno-kategorichnye vpolne $o$-minimalnye teorii”, Vestn. NGU. Ser. matem., mekh., inform., 11:1 (2011), 45–57 | Zbl

[17] V. V. Verbovskii, “O glubine funktsii slabo $o$-minimalnykh struktur i primer slabo $o$-minimalnoi struktury bez slabo $o$-minimalnoi teorii”, Proc. Inf. Control Problems Inst., 1996, 207–216

[18] V V. Verbovskiy, “On formula depth of weakly $o$-minimal structures”, Algebra and model theory, eds. A. G. Pinus et al., Novosibirsk State Tech. Univ., Novosibirsk, 1997, 209–223

[19] B. Sh. Kulpeshov, “Binarnyi rang vypuklosti v slabo $o$-minimalnykh strukturakh”, Izv. NAN RK, ser. fiz.-matem., 2015, no. 1(299), 5–13 | MR