Algebras of distributions for binary formulas in countably categorical weakly $o$-minimal structures
Algebra i logika, Tome 56 (2017) no. 1, pp. 20-54

Voir la notice de l'article provenant de la source Math-Net.Ru

Algebras of distributions for binary isolating formulas over a type for countably categorical weakly o-minimal theories are described, and the generalized commutative property of an algebra of distributions for binary isolating formulas over a pair of types for countably categorical weakly ominimal theories is characterized in terms of convexity rank.
Keywords: countably categorical weakly $o$-minimal theory, convexity rank, algebra of distributions for binary isolating formulas, generalized commutative monoid.
@article{AL_2017_56_1_a1,
     author = {D. Yu. Emel'yanov and B. Sh. Kulpeshov and S. V. Sudoplatov},
     title = {Algebras of distributions for binary formulas in countably categorical weakly $o$-minimal structures},
     journal = {Algebra i logika},
     pages = {20--54},
     publisher = {mathdoc},
     volume = {56},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2017_56_1_a1/}
}
TY  - JOUR
AU  - D. Yu. Emel'yanov
AU  - B. Sh. Kulpeshov
AU  - S. V. Sudoplatov
TI  - Algebras of distributions for binary formulas in countably categorical weakly $o$-minimal structures
JO  - Algebra i logika
PY  - 2017
SP  - 20
EP  - 54
VL  - 56
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2017_56_1_a1/
LA  - ru
ID  - AL_2017_56_1_a1
ER  - 
%0 Journal Article
%A D. Yu. Emel'yanov
%A B. Sh. Kulpeshov
%A S. V. Sudoplatov
%T Algebras of distributions for binary formulas in countably categorical weakly $o$-minimal structures
%J Algebra i logika
%D 2017
%P 20-54
%V 56
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2017_56_1_a1/
%G ru
%F AL_2017_56_1_a1
D. Yu. Emel'yanov; B. Sh. Kulpeshov; S. V. Sudoplatov. Algebras of distributions for binary formulas in countably categorical weakly $o$-minimal structures. Algebra i logika, Tome 56 (2017) no. 1, pp. 20-54. http://geodesic.mathdoc.fr/item/AL_2017_56_1_a1/