Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2017_56_1_a1, author = {D. Yu. Emel'yanov and B. Sh. Kulpeshov and S. V. Sudoplatov}, title = {Algebras of distributions for binary formulas in countably categorical weakly $o$-minimal structures}, journal = {Algebra i logika}, pages = {20--54}, publisher = {mathdoc}, volume = {56}, number = {1}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2017_56_1_a1/} }
TY - JOUR AU - D. Yu. Emel'yanov AU - B. Sh. Kulpeshov AU - S. V. Sudoplatov TI - Algebras of distributions for binary formulas in countably categorical weakly $o$-minimal structures JO - Algebra i logika PY - 2017 SP - 20 EP - 54 VL - 56 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AL_2017_56_1_a1/ LA - ru ID - AL_2017_56_1_a1 ER -
%0 Journal Article %A D. Yu. Emel'yanov %A B. Sh. Kulpeshov %A S. V. Sudoplatov %T Algebras of distributions for binary formulas in countably categorical weakly $o$-minimal structures %J Algebra i logika %D 2017 %P 20-54 %V 56 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/AL_2017_56_1_a1/ %G ru %F AL_2017_56_1_a1
D. Yu. Emel'yanov; B. Sh. Kulpeshov; S. V. Sudoplatov. Algebras of distributions for binary formulas in countably categorical weakly $o$-minimal structures. Algebra i logika, Tome 56 (2017) no. 1, pp. 20-54. http://geodesic.mathdoc.fr/item/AL_2017_56_1_a1/
[1] D. Macpherson, D. Marker, Ch. Steinhorn, “Weakly $o$-minimal structures and real closed fields”, Trans. Am. Math. Soc., 352:12 (2000), 5435–5483 | DOI | MR | Zbl
[2] S. V. Sudoplatov, Classification of countable models of complete theories, Novosibirsk State Tech. Univ., Novosibirsk, 2014
[3] I. V. Shulepov, S. V. Sudoplatov, “Algebras of distributions for isolating formulas of a complete theory”, Sib. elektron. matem. izv., 11 (2014), 380–407 http://semr.math.nsc.ru/v11/p380-407.pdf | MR | Zbl
[4] A. Pillay, “Countable models of stable theories”, Proc. Am. Math. Soc., 89:4 (1983), 666–672 | DOI | MR | Zbl
[5] B. S. Baizhanov, “Orthogonality of one-types in weakly $o$-minimal theories”, Algebra and model theory, v. 2, eds. A. G. Pinus et al., Novosibirsk State Tech. Univ., Novosibirsk, 1999, 3–28 | MR
[6] B. S. Baizhanov, B. Sh. Kulpeshov, “On behaviour of 2-formulas in weakly $o$-minimal theories”, Mathematical logic in Asia, Proc. the 9th Asian logic conf. (Novosibirsk, Russia, August 16–19, 2005), eds. S. S. Goncharov et al., World Scientific, Hackensack, NJ, 2006, 31–40 | DOI | MR | Zbl
[7] S. V. Sudoplatov, “Gipergrafy prostykh modelei i raspredeleniya schëtnykh modelei malykh teorii”, Fundament. i prikl. matem., 15:7 (2009), 179–203
[8] B. S. Baizhanov, S. V. Sudoplatov, V. V. Verbovskiy, “Conditions for non-symmetric relations of semi-isolation”, Sib. elektron. matem. izv., 9 (2012), 161–184 http://semr.math.nsc.ru/v9/p161-184.pdf | MR | Zbl
[9] S. V. Sudoplatov, “Algebras of distributions for semi-isolating formulas of a complete theory”, Sib. elektron. matem. izv., 11 (2014), 408–433 http://semr.math.nsc.ru/v11/p408-433.pdf | MR | Zbl
[10] S. V. Sudoplatov, “Algebras of distributions for binary semi-isolating formulas for families of isolated types and for countably categorical theories”, Int. Math. Forum, 9:21 (2014), 1029–1033 | DOI | MR
[11] B. S. Baizhanov, “One-types in weakly $o$-minimal theories”, Proc. Inf. Control Problems Inst., Almaty, 1996, 75–88
[12] B. Herwig, H. D. Macpherson, G. Martin, A. Nurtazin, J. K. Truss, “On $\aleph_0$-categorical weakly $o$-minimal structures”, Ann. Pure Appl. Logic, 101:1 (2000), 65–93 | DOI | MR | Zbl
[13] B. Sh. Kulpeshov, “Weakly $o$-minimal structures and some of their properties”, J. Symb. Log., 63:4 (1998), 1511–1528 | DOI | MR | Zbl
[14] B. Sh. Kulpeshov, “Criterion for binarity of $\aleph_0$-categorical weakly $o$-minimal theories”, Ann. Pure Appl. Logic, 145:3 (2007), 354–367 | DOI | MR | Zbl
[15] B. S. Baizhanov, “Expansion of a model of a weakly $o$-minimal theory by a family of unary predicates”, J. Symb. Log., 66:3 (2001), 1382–1414 | DOI | MR | Zbl
[16] B. Sh. Kulpeshov, “Schetno-kategorichnye vpolne $o$-minimalnye teorii”, Vestn. NGU. Ser. matem., mekh., inform., 11:1 (2011), 45–57 | Zbl
[17] V. V. Verbovskii, “O glubine funktsii slabo $o$-minimalnykh struktur i primer slabo $o$-minimalnoi struktury bez slabo $o$-minimalnoi teorii”, Proc. Inf. Control Problems Inst., 1996, 207–216
[18] V V. Verbovskiy, “On formula depth of weakly $o$-minimal structures”, Algebra and model theory, eds. A. G. Pinus et al., Novosibirsk State Tech. Univ., Novosibirsk, 1997, 209–223
[19] B. Sh. Kulpeshov, “Binarnyi rang vypuklosti v slabo $o$-minimalnykh strukturakh”, Izv. NAN RK, ser. fiz.-matem., 2015, no. 1(299), 5–13 | MR