Modularity and distributivity of $3$-generated lattices with special elements among generators
Algebra i logika, Tome 56 (2017) no. 1, pp. 3-19
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider $3$-generated lattices whose generating elements possess properties that are, in a sense, close to modularity or distributivity. Those combinations of these properties are specified that are sufficient for a lattice to be modular, and even distributive.
Keywords:
modular lattice, distributive lattice, left modular element, right modular element, distributive element, standard element.
@article{AL_2017_56_1_a0,
author = {A. G. Gein and M. P. Shushpanov},
title = {Modularity and distributivity of $3$-generated lattices with special elements among generators},
journal = {Algebra i logika},
pages = {3--19},
publisher = {mathdoc},
volume = {56},
number = {1},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2017_56_1_a0/}
}
TY - JOUR AU - A. G. Gein AU - M. P. Shushpanov TI - Modularity and distributivity of $3$-generated lattices with special elements among generators JO - Algebra i logika PY - 2017 SP - 3 EP - 19 VL - 56 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AL_2017_56_1_a0/ LA - ru ID - AL_2017_56_1_a0 ER -
A. G. Gein; M. P. Shushpanov. Modularity and distributivity of $3$-generated lattices with special elements among generators. Algebra i logika, Tome 56 (2017) no. 1, pp. 3-19. http://geodesic.mathdoc.fr/item/AL_2017_56_1_a0/