Modularity and distributivity of $3$-generated lattices with special elements among generators
Algebra i logika, Tome 56 (2017) no. 1, pp. 3-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider $3$-generated lattices whose generating elements possess properties that are, in a sense, close to modularity or distributivity. Those combinations of these properties are specified that are sufficient for a lattice to be modular, and even distributive.
Keywords: modular lattice, distributive lattice, left modular element, right modular element, distributive element, standard element.
@article{AL_2017_56_1_a0,
     author = {A. G. Gein and M. P. Shushpanov},
     title = {Modularity and distributivity of $3$-generated lattices with special elements among generators},
     journal = {Algebra i logika},
     pages = {3--19},
     publisher = {mathdoc},
     volume = {56},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2017_56_1_a0/}
}
TY  - JOUR
AU  - A. G. Gein
AU  - M. P. Shushpanov
TI  - Modularity and distributivity of $3$-generated lattices with special elements among generators
JO  - Algebra i logika
PY  - 2017
SP  - 3
EP  - 19
VL  - 56
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2017_56_1_a0/
LA  - ru
ID  - AL_2017_56_1_a0
ER  - 
%0 Journal Article
%A A. G. Gein
%A M. P. Shushpanov
%T Modularity and distributivity of $3$-generated lattices with special elements among generators
%J Algebra i logika
%D 2017
%P 3-19
%V 56
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2017_56_1_a0/
%G ru
%F AL_2017_56_1_a0
A. G. Gein; M. P. Shushpanov. Modularity and distributivity of $3$-generated lattices with special elements among generators. Algebra i logika, Tome 56 (2017) no. 1, pp. 3-19. http://geodesic.mathdoc.fr/item/AL_2017_56_1_a0/

[1] O. Ore, “On the foundation of abstract algebra. I”, Ann. Math. (2), 36 (1935), 406–437 | DOI | MR | Zbl

[2] G. Birkhoff, “Neutral elements in general lattices”, Bull. Am. Math. Soc., 46 (1940), 702–705 | DOI | MR | Zbl

[3] G. Grätzer, “Standard ideálok”, Magyar Tud. Akad. Mat. Fiz. Oszt. Közl, 9 (1959), 81–97 | MR | Zbl

[4] M. Sudzuki, Stroenie gruppy i stroenie struktury ee podgrupp, Biblioteka sb. “Matematika”, IL, M., 1960 | MR

[5] L. R. Wilcox, “Modularity in the theory of lattices”, Ann. Math. (2), 40 (1939), 490–505 | DOI | MR | Zbl

[6] M. Stern, Semimodular lattices. Theory and applications, Encyclopedia Math. Appl., 73, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl

[7] G. Grätzer, E. T. Schmidt, “Standard ideals in lattices”, Acta Math. Acad. Sci. Hungar., 12 (1961), 17–86 | DOI | MR | Zbl

[8] S. P. Bhatta, “A characterization of neutral elements by the exclusion of sublattices”, Discrete Math., 309:6 (2009), 1691–1702 | DOI | MR | Zbl

[9] A. G. Gein, M. P. Shushpanov, “Dostatochnye usloviya modulyarnosti reshetki s porozhdayuschimi elementami, obladayuschimi svoistvami tipa modulyarnosti”, Sib. matem. zh., 56:4 (2015), 798–804 | MR | Zbl

[10] A. G. Gein, M. P. Shushpanov, “Konechnoporozhdënnye reshëtki s vpolne modulyarnymi elementami sredi porozhdayuschikh”, Algebra i logika, 52:6 (2013), 657–666 | MR

[11] M. P. Shushpanov, “Reshëtki, porozhdënnye modulyarnymi elementami”, Izv. vuzov. Matem., 2015, no. 12, 84–86 | MR | Zbl

[12] A. G. Gein, M. P. Shushpanov, “Usloviya distributivnosti 3-porozhdennykh reshetok”, Mezhd. konf. “Maltsevskie chteniya” (10–13 noyabrya 2014, Novosibirsk), Tez. dokl., IM SO RAN i NGU, Novosibirsk, 2014, 131

[13] A. G. Gein, M. P. Shushpanov, “The minimal system of defining relations of the free modular lattice of rank 3 and lattices close to modular one”, Math. Stat., 2:1 (2014), 27–31