Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2016_55_5_a8, author = {B. Poizat}, title = {Supergeneric equations}, journal = {Algebra i logika}, pages = {624--635}, publisher = {mathdoc}, volume = {55}, number = {5}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2016_55_5_a8/} }
B. Poizat. Supergeneric equations. Algebra i logika, Tome 55 (2016) no. 5, pp. 624-635. http://geodesic.mathdoc.fr/item/AL_2016_55_5_a8/
[1] B. Poizat, “Supergénérix”, Journal of Algebra, 404 (2014), 240–270 | DOI | MR | Zbl
[2] L. Newelski, “Topological dynamics of definable group actions”, J. Symb. Log., 74:1 (2009), 50–72 | DOI | MR | Zbl
[3] K. Jaber, F. O. Wagner, “Largeur et nilpotence”, Commun. Algebra, 28:6 (2000), 2869–2885 | DOI | MR | Zbl
[4] K. Jaber, “Groupes et identités”, Commun. Algebra, 30:5 (2002), 2387–2404 | DOI | MR | Zbl
[5] B. Poizat, Groupes stables, Une tentative de conciliation entre la Géométrie Algébrique et la Logique Mathématique, Nur Al-Mantiq Wal-Ma'rifah, 2, Bruno Poizat, Villeurbanne, France, 1987 | MR | Zbl
[6] B. Poizat, “Équations génériques”, Seminarber., Humboldt-Univ. Berlin, Sekt. Math., 110 (1990), 131–138 | MR | Zbl
[7] F. O. Wagner, “À propos d'équations génériques”, J. Symb. Log., 57:2 (1992), 548–554 | DOI | MR | Zbl
[8] K. Jaber, “Équations génériques dans un groupe stable nilpotent”, J. Symb. Log., 64:2 (1999), 761–768 | DOI | MR | Zbl
[9] B. H. Neumann, “A note on algebraically closed groups”, J. Lond. Math. Soc., 27 (1952), 247–249 | DOI | MR | Zbl
[10] A. A. Klyachko, A. V. Trofimov, “The number of non-solutions of an equation in a group”, J. Group Theory, 8:6 (2005), 747–754 | DOI | MR | Zbl
[11] B. Poizat, “Groupes équationnellement minimaux”, Vestnik Karagandinskogo un-ta. Ser. matem., 2013, no. 1(69), 86–89
[12] N. Yu. Makarenko, E. I. Khukhro, “O gruppakh s $l$-rasscheplyayuschimi avtomorfizmami poryadka tri i chetyre”, Algebra i logika, 42:3 (2003), 293–311 | MR | Zbl