Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2016_55_5_a6, author = {F. A. Dudkin}, title = {The centralizer dimension of generalized {Baumslag--Solitar} groups}, journal = {Algebra i logika}, pages = {611--615}, publisher = {mathdoc}, volume = {55}, number = {5}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2016_55_5_a6/} }
F. A. Dudkin. The centralizer dimension of generalized Baumslag--Solitar groups. Algebra i logika, Tome 55 (2016) no. 5, pp. 611-615. http://geodesic.mathdoc.fr/item/AL_2016_55_5_a6/
[1] J.-P. Serre, Trees, Springer-Verlag, Berlin–Heidelberg–New York, 1980 | MR | Zbl
[2] M. Clay, M. Forester, “On the isomorphism problem for generalized Baumslag–Solitar groups”, Algebr. Geom. Topol., 8:4 (2008), 2289–2322 | DOI | MR | Zbl
[3] D. J. S. Robinson, “Generalized Baumslag–Solitar groups: a survey of recent progress”, Groups St Andrews 2013, Sel. papers conf. (St. Andrews, UK, August 3–11, 2013), London Math. Soc. Lecture Note Ser., 422, eds. C. M. Campbell et al., Cambridge Univ. Press, Cambridge, 2015, 457–468 | MR | Zbl
[4] G. Baumslag, D. Solitar, “Some two-generator one-relator non-Hopfian groups”, Bull. Am. Math. Soc., 68:3 (1962), 199–201 | DOI | MR | Zbl
[5] F. A. Dudkin, “O vlozhenii grupp Baumslaga–Solitera v obobschënnye gruppy Baumslaga–Solitera”, Sib. matem. zh., 55:1 (2014), 90–96 | MR | Zbl
[6] G. Levitt, “Quotients and subgroups of Baumslag–Solitar groups”, J. Group Theory, 18:1 (2015), 1–43 | DOI | MR | Zbl
[7] A. Myasnikov, P. Shumyatsky, “Discriminating groups and $c$-dimension”, J. Group Theory, 7:1 (2004), 135–142 | MR | Zbl
[8] R. Lindon, P. Shupp, Kombinatornaya teoriya grupp, Mir, M., 1980