Spectra of automorphic extensions of finite simple exceptional groups of Lie type
Algebra i logika, Tome 55 (2016) no. 5, pp. 540-557
Voir la notice de l'article provenant de la source Math-Net.Ru
The spectrum $\omega(G)$ of a finite group $G$ is the set of orders of elements of $G$. Let $S$ be a simple exceptional group of type $E_6$ or $E_7$. We describe all finite groups $G$ such that $S\le G\le\operatorname{Aut}S$ and $\omega(G)=\omega(S)$. Along with the previously obtained results, this provides a description of all finite groups $G$ such that $\omega(G)=\omega(S)$ and completes the study of the recognition-by-spectrum problem for all simple exceptional groups of Lie type.
Keywords:
automorphic extension, finite simple group, order of element, recognizability by spectrum.
Mots-clés : exceptional group
Mots-clés : exceptional group
@article{AL_2016_55_5_a1,
author = {M. A. Zvezdina},
title = {Spectra of automorphic extensions of finite simple exceptional groups of {Lie} type},
journal = {Algebra i logika},
pages = {540--557},
publisher = {mathdoc},
volume = {55},
number = {5},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2016_55_5_a1/}
}
M. A. Zvezdina. Spectra of automorphic extensions of finite simple exceptional groups of Lie type. Algebra i logika, Tome 55 (2016) no. 5, pp. 540-557. http://geodesic.mathdoc.fr/item/AL_2016_55_5_a1/