Abnormality criteria for $p$-complements
Algebra i logika, Tome 55 (2016) no. 5, pp. 531-539.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that for any finite group $G$ possessing a $p$-complement $H$ for some prime number $p$, the following assertions are equivalent: (1) all $p$-complements of $G$ are selfnormalizable; (2) all $p$-complements of $G$ are abnormal; (3) the subgroup $H$ is abnormal in $G$; (4) $NG(HX)=HX$ for any $X\trianglelefteq G$; (5) $G$ does not contain central chief pfactors.
Mots-clés : $p$-complement
Keywords: abnormal subgroup, pronormal subgroup, Hall subgroup.
@article{AL_2016_55_5_a0,
     author = {E. P. Vdovin and D. O. Revin},
     title = {Abnormality criteria for $p$-complements},
     journal = {Algebra i logika},
     pages = {531--539},
     publisher = {mathdoc},
     volume = {55},
     number = {5},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2016_55_5_a0/}
}
TY  - JOUR
AU  - E. P. Vdovin
AU  - D. O. Revin
TI  - Abnormality criteria for $p$-complements
JO  - Algebra i logika
PY  - 2016
SP  - 531
EP  - 539
VL  - 55
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2016_55_5_a0/
LA  - ru
ID  - AL_2016_55_5_a0
ER  - 
%0 Journal Article
%A E. P. Vdovin
%A D. O. Revin
%T Abnormality criteria for $p$-complements
%J Algebra i logika
%D 2016
%P 531-539
%V 55
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2016_55_5_a0/
%G ru
%F AL_2016_55_5_a0
E. P. Vdovin; D. O. Revin. Abnormality criteria for $p$-complements. Algebra i logika, Tome 55 (2016) no. 5, pp. 531-539. http://geodesic.mathdoc.fr/item/AL_2016_55_5_a0/

[1] B. Huppert, Endliche Gruppen, v. I, Grundlehren mathem. Wiss. Einzeldarstel., 134, Springer-Verlag, Berlin a.o., 1967 | DOI | MR | Zbl

[2] L. S. Kazarin, “O proizvedenii konechnykh grupp”, DAN SSSR, 269:3 (1983), 528–531 | MR | Zbl

[3] E. P. Vdovin, D. O. Revin, “Teoremy silovskogo tipa”, Uspekhi matem. nauk, 66:5(401) (2011), 3–46 | DOI | MR | Zbl

[4] D. O. Revin, E. P. Vdovin, “An existence criterion for Hall subgroups of finite groups”, J. Group Theory, 14:1 (2011), 93–101 | DOI | MR | Zbl

[5] A. A. Buturlakin, D. O. Revin, “On $p$-complements of finite groups”, Sib. elektron. matem. izv., 10 (2013), 414–417 | MR | Zbl

[6] M. N. Nesterov, “Arifmetika sopryazhënnosti $p$-dopolnenii”, Algebra i logika, 54:1 (2015), 53–69 | MR | Zbl

[7] E. P. Vdovin, D. O. Revin, “Suschestvovanie pronormalnykh $\pi$-khollovykh podgrupp v $E_\pi$-gruppakh”, Sib. matem. zh., 56:3 (2015), 481–486 | MR | Zbl

[8] K. Doerk, T. Hawkes, Finite soluble groups, De Gruyter Expo. Math., 4, Walter de Gruyter, Berlin etc., 1992 | MR

[9] I. M. Isaacs, “Irreducible products of characters”, J. Algebra, 223:2 (2000), 630–646 | DOI | MR | Zbl

[10] M. Aschbacher, Finite group theory, Cambridge Stud. Adv. Math., 10, Cambridge Univ. Press, Cambridge, 1986 | MR | Zbl

[11] P. Kleidman, M. Liebeck, The subgroup structure of the finite classical groups, London Math. Soc. Lect. Note Series, 129, Cambridge Univ. Press, Cambridge, 1990 | MR | Zbl

[12] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of finite groups, Clarendon Press, Oxford, 1985 | MR | Zbl

[13] P. Hall, “Theorems like Sylow's”, Proc. Lond. Math. Soc. III Ser., 6:22 (1956), 286–304 | DOI | MR | Zbl

[14] E. P. Vdovin, D. O. Revin, “O pronormalnosti khollovykh podgrupp”, Sib. matem. zh., 54:1 (2013), 35–43 | MR | Zbl

[15] E. P. Vdovin, D. O. Revin, “Pronormalnost khollovykh podgrupp v konechnykh prostykh gruppakh”, Sib. matem. zh., 53:3 (2012), 527–542 | MR | Zbl