Universal algebraic geometry with relation~$\not=$
Algebra i logika, Tome 55 (2016) no. 4, pp. 498-511.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove some results in universal algebraic geometry over algebraic structures of arbitrary functional languages with relation $\not=$ adjoined.
Keywords: inequality, universal algebraic geometry
Mots-clés : equation.
@article{AL_2016_55_4_a8,
     author = {A. N. Shevlyakov},
     title = {Universal algebraic geometry with relation~$\not=$},
     journal = {Algebra i logika},
     pages = {498--511},
     publisher = {mathdoc},
     volume = {55},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2016_55_4_a8/}
}
TY  - JOUR
AU  - A. N. Shevlyakov
TI  - Universal algebraic geometry with relation~$\not=$
JO  - Algebra i logika
PY  - 2016
SP  - 498
EP  - 511
VL  - 55
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2016_55_4_a8/
LA  - ru
ID  - AL_2016_55_4_a8
ER  - 
%0 Journal Article
%A A. N. Shevlyakov
%T Universal algebraic geometry with relation~$\not=$
%J Algebra i logika
%D 2016
%P 498-511
%V 55
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2016_55_4_a8/
%G ru
%F AL_2016_55_4_a8
A. N. Shevlyakov. Universal algebraic geometry with relation~$\not=$. Algebra i logika, Tome 55 (2016) no. 4, pp. 498-511. http://geodesic.mathdoc.fr/item/AL_2016_55_4_a8/

[1] E. Daniyarova, A. Myasnikov, V. Remeslennikov, “Unification theorems in algebraic geometry”, Aspects of infinite groups, A Festschrift in honor of A. Gaglione, Papers of the conf. (Fairfield, USA, March 2007 in honour of A. Gaglione's 60th birthday), Algebra Discr. Math. (Hackensack), 1, eds. B. Fine et al., World Sci., Hackensack, NJ, 2008, 80–111 | MR | Zbl

[2] E. Yu. Daniyarova, A. G. Myasnikov, V. N. Remeslennikov, “Algebraicheskaya geometriya nad algebraicheskimi sistemami. II. Osnovaniya”, Fundam. prikl. matem., 17:1 (2011/2012), 65–106 | MR

[3] E. Daniyarova, A. Myasnikov, V. Remeslennikov, “Algebraic geometry over algebraic structures. III: Equationally Noetherian property and compactness”, Southeast Asian Bull. Math., 35:1 (2011), 35–68 | MR | Zbl

[4] E. Yu. Daniyarova, A. G. Myasnikov, V. N. Remeslennikov, “Algebraicheskaya geometriya nad algebraicheskimi sistemami. IV. Ekvatsionalnye oblasti i ko-oblasti”, Algebra i logika, 49:6 (2010), 715–756 | MR

[5] E. Yu. Daniyarova, A. G. Myasnikov, V. N. Remeslennikov, “Algebraicheskaya geometriya nad algebraicheskimi sistemami. V. Sluchai proizvolnoi signatury”, Algebra i logika, 51:1 (2012), 41–60 | MR | Zbl

[6] M. Kotov, “Equationally Noetherian property and close properties”, Southeast Asian Bull. Math., 35:3 (2011), 419–429 | MR | Zbl

[7] A. N. Shevlyakov, “Commutative idempotent semigroups at the service of universal algebraic geometry”, Southeast Asian Bull. Math., 35:1 (2011), 111–136 | MR | Zbl