Mots-clés : ultraproduct.
@article{AL_2016_55_4_a7,
author = {M. V. Schwidefsky},
title = {The class of bounded lattices is not axiomatizable},
journal = {Algebra i logika},
pages = {493--497},
year = {2016},
volume = {55},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2016_55_4_a7/}
}
M. V. Schwidefsky. The class of bounded lattices is not axiomatizable. Algebra i logika, Tome 55 (2016) no. 4, pp. 493-497. http://geodesic.mathdoc.fr/item/AL_2016_55_4_a7/
[1] K. V. Adaricheva, J. B. Nation, “Reflections on lower bounded lattices”, Algebra Univers., 53:2/3 (2005), 307–330 | DOI | MR | Zbl
[2] R. N. McKenzie, “Equational bases and non-modular lattice varieties”, Trans. Am. Math. Soc., 174:1 (1972), 1–43 | DOI | MR
[3] R. Freese, J. Ježek, J. B. Nation, Free lattices, Math. Surv. Monogr., 42, Am. Math. Soc., Providence, RI, 1995 | DOI | MR | Zbl
[4] A. Day, “Splitting lattices generate all lattices”, Algebra Univers., 7:2 (1977), 163–169 | DOI | MR | Zbl
[5] Yu. L. Ershov, “Svoistva reshetok, sokhranyayuschiesya pri svobodnykh proizvedeniyakh”, Algebra i logika, 39:1 (2000), 66–73 | MR | Zbl
[6] K. V. Adaricheva, V. A. Gorbunov, “On lower bounded lattices”, Algebra Univers., 46:1/2 (2001), 203–213 | DOI | MR | Zbl