Index set of structures with two equivalence relations that are autostable relative to strong constructivizations
Algebra i logika, Tome 55 (2016) no. 4, pp. 465-477.

Voir la notice de l'article provenant de la source Math-Net.Ru

We derive a bound on the algorithmic complexity for the class of computable structures with two equivalence relations that have a strong constructivization and are autostable relative to strong constructivizations. We construct codings of a linear order and of an automorphically nontrivial directed irreflexive graph into a structure with two equivalence relations. It is proved that such codings preserve the degree spectrum and $d$-computable dimension.
Keywords: autostability relative to strong constructivizations, computable structure, hyperarithmetical hierarchy, index set, irreflexive directed graph, coding, linear order, strongly constructivizable structure, structure with two equivalence relations.
@article{AL_2016_55_4_a5,
     author = {M. I. Marchuk},
     title = {Index set of structures with two equivalence relations that are autostable relative to strong constructivizations},
     journal = {Algebra i logika},
     pages = {465--477},
     publisher = {mathdoc},
     volume = {55},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2016_55_4_a5/}
}
TY  - JOUR
AU  - M. I. Marchuk
TI  - Index set of structures with two equivalence relations that are autostable relative to strong constructivizations
JO  - Algebra i logika
PY  - 2016
SP  - 465
EP  - 477
VL  - 55
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2016_55_4_a5/
LA  - ru
ID  - AL_2016_55_4_a5
ER  - 
%0 Journal Article
%A M. I. Marchuk
%T Index set of structures with two equivalence relations that are autostable relative to strong constructivizations
%J Algebra i logika
%D 2016
%P 465-477
%V 55
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2016_55_4_a5/
%G ru
%F AL_2016_55_4_a5
M. I. Marchuk. Index set of structures with two equivalence relations that are autostable relative to strong constructivizations. Algebra i logika, Tome 55 (2016) no. 4, pp. 465-477. http://geodesic.mathdoc.fr/item/AL_2016_55_4_a5/

[1] S. S. Goncharov, Yu. L. Ershov, Konstruktivnye modeli, Sibirskaya shkola algebry i logiki, Nauchnaya kniga, Novosibirsk, 1999

[2] A. T. Nurtazin, Vychislimye klassy i algebraicheskie kriterii avtoustoichivosti, Diss. kand. fiz.-mat. nauk, Alma-Ata, 1974

[3] E. B. Fokina, “Indeksnye mnozhestva razreshimykh modelei”, Sib. matem. zh., 48:5 (2007), 1167–1179 | MR | Zbl

[4] S. S. Goncharov, M. I. Marchuk, “Indeksnye mnozhestva avtoustoichivykh otnositelno silnykh konstruktivizatsii konstruktivnykh modelei ogranichennoi signatury”, Algebra i logika, 54:2 (2015), 163–192 | DOI | MR | Zbl

[5] S. S. Goncharov, M. I. Marchuk, “Indeksnye mnozhestva avtoustoichivykh otnositelno silnykh konstruktivizatsii konstruktivnykh modelei konechnoi signatury i signatury grafov”, Algebra i logika, 54:6 (2015), 663–679 | DOI | MR

[6] S. S. Goncharov, N. A. Bazhenov, M. I. Marchuk, “Indeksnoe mnozhestvo avtoustoichivykh otnositelno silnykh konstruktivizatsii bulevykh algebr”, Sib. matem. zh., 56:3 (2015), 498–512 | DOI | MR | Zbl

[7] S. S. Goncharov, N. A. Bazhenov, M. I. Marchuk, “Indeksnoe mnozhestvo avtoustoichivykh otnositelno silnykh konstruktivizatsii lineinykh poryadkov”, Vestn. NGU. Ser. matem., mekh., inform., 15:3 (2015), 51–60 | Zbl

[8] S. S. Goncharov, N. A. Bazhenov, M. I. Marchuk, “Indeksnye mnozhestva avtoustoichivykh otnositelno silnykh konstruktivizatsii konstruktivnykh modelei estestvennykh klassov”, Dokl. AN, 464:1 (2015), 12–14 | DOI | MR | Zbl

[9] S. S. Goncharov, M. I. Marchuk, “Indeksnye mnozhestva avtoustoichivykh otnositelno silnykh konstruktivizatsii konstruktivnykh modelei”, Vestn. NGU. Ser. matem., mekh., inform., 13:4 (2013), 43–67 | Zbl

[10] S. S. Goncharov, M. I. Marchuk, “Indeksnye mnozhestva avtoustoichivykh otnositelno silnykh konstruktivizatsii konstruktivnykh modelei netrivialnykh signatur”, Dokl. AN, 461:2 (2015), 140–142 | DOI | MR | Zbl

[11] S. S. Goncharov, Dzh. Nait, “Vychislimye strukturnye i antistrukturnye teoremy”, Algebra i logika, 41:6 (2002), 639–681 | MR | Zbl

[12] J. F. Knight, “Degrees coded in jumps of orderings”, J. Symb. Log., 51:4 (1986), 1034–1042 | DOI | MR | Zbl

[13] U. Kalvert, D. Kammins, Dzh. F. Nait, S. Miller, “Sravnenie klassov konechnykh struktur”, Algebra i logika, 43:6 (2004), 666–701 | MR | Zbl

[14] J. F. Knight, S. Miller, M. Vanden Boom, “Turing computable embeddings”, J. Symb. Log., 72:3 (2007), 901–918 | DOI | MR | Zbl

[15] D. A. Tusupov, “Izomorfizmy i algoritmicheskie svoistva struktur s dvumya ekvivalentnostyami”, Algebra i logika, 55:1 (2016), 75–86 | DOI