Layers over minimal logic
Algebra i logika, Tome 55 (2016) no. 4, pp. 449-464.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce a classification of extensions of Johansson's minimal logic J that extends the classification of superintuitionistic logics proposed by T. Hosoi. It is proved that the layer number of any finitely axiomatizable logic is effectively computable. Every layer over J has a least logic. It is stated that each layer has finitely many maximal logics, and minimal and maximal logics of all layers are recognizable over J.
Keywords: minimal logic, decidability, recognizable logic, Kripke frame.
@article{AL_2016_55_4_a4,
     author = {L. L. Maksimova and V. F. Yun},
     title = {Layers over minimal logic},
     journal = {Algebra i logika},
     pages = {449--464},
     publisher = {mathdoc},
     volume = {55},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2016_55_4_a4/}
}
TY  - JOUR
AU  - L. L. Maksimova
AU  - V. F. Yun
TI  - Layers over minimal logic
JO  - Algebra i logika
PY  - 2016
SP  - 449
EP  - 464
VL  - 55
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2016_55_4_a4/
LA  - ru
ID  - AL_2016_55_4_a4
ER  - 
%0 Journal Article
%A L. L. Maksimova
%A V. F. Yun
%T Layers over minimal logic
%J Algebra i logika
%D 2016
%P 449-464
%V 55
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2016_55_4_a4/
%G ru
%F AL_2016_55_4_a4
L. L. Maksimova; V. F. Yun. Layers over minimal logic. Algebra i logika, Tome 55 (2016) no. 4, pp. 449-464. http://geodesic.mathdoc.fr/item/AL_2016_55_4_a4/

[1] T. Hosoi, “On intermediate logics I”, J. Fac. Sci. Univ. Tokyo, Sec. Ia, 14 (1967), 293–312 | MR

[2] I. Johansson, “Der Minimalkalk?ul, ein reduzierter intuitionistischer Formalismus”, Compos. Math., 4 (1937), 119–136 | MR

[3] W. Rautenberg, Klassische und nichtklassische Aussagenlogik, Logik Grundlagen Math., 22, Friedr. Vieweg Sohn., Braunschweig–Wiesbaden, 1979 | MR | Zbl

[4] S. P. Odintsov, Constructive negations and paraconsistency, Trends Log. Stud. Log. Libr., 26, Springer-Verlag, Dordrecht, 2008 | MR | Zbl

[5] L. L. Maksimova, “Predtablichnye superintuitsionistskie logiki”, Algebra i logika, 11:5 (1972), 558–570 | MR | Zbl

[6] L. L. Maksimova, V. F. Yun, “Uznavaemye logiki”, Algebra i logika, 54:2 (2015), 252–274 | MR | Zbl

[7] S. Odintsov, “Logic of classical refutability and class of extensions of minimal logic”, Log. Log. Philos., 9 (2001), 91–107 | DOI | MR | Zbl

[8] K. Segerberg, “Propositional logics related to Heyting's and Johansson's”, Theoria, 34 (1968), 26–61 | DOI | MR

[9] L. L. Maksimova, “Metod dokazatelstva interpolyatsii v paraneprotivorechivykh rasshireniyakh minimalnoi logiki”, Algebra i logika, 46:5 (2007), 627–648 | MR | Zbl

[10] D. M. Gabbay, L. Maksimova, Interpolation and definability: modal and intuitionistic logics, Oxford Logic Guides, Oxford Sci. Publ., 46, Clarendon Press, Oxford, 2005 | MR | Zbl

[11] M. H. Stone, “Topological representations of distributive lattices and Brouwerian logics”, Čas. Mat. Fys., 67 (1937), 1–25 | Zbl

[12] H. Rasiowa, R. Sikorski, The mathematics of metamathematics, PWN, Warszawa, 1963 ; E. Raseva, R. Sikorskii, Matematika metamatematiki, Nauka, M., 1972 | MR | MR

[13] A. V. Kuznetsov, “O nekotorykh problemakh klassifikatsii superintuitsionistskikh logik”, Tretya Vsesoyuz. konf. po matem. logike, Novosibirsk, 1974, 119–122

[14] A. I. Maltsev, Algebraicheskie sistemy, Nauka, M., 1970 | MR

[15] M. Dummett, “A propositional calculus with denumerable matrix”, J. Symb. Log., 24:1 (1959), 97–106 | DOI | MR | Zbl

[16] L. L. Maksimova, “Teorema Kreiga v superintuitsionistskikh logikakh i amalgamiruemye mnogoobraziya psevdobulevykh algebr”, Algebra i logika, 16:6 (1977), 643–681 | MR | Zbl

[17] K. A. Baker, “Finite equational bases for finite algebras in a congruence-distributive equational class”, Adv. Math., 24 (1977), 207–243 | DOI | MR | Zbl