Layers over minimal logic
Algebra i logika, Tome 55 (2016) no. 4, pp. 449-464
Voir la notice de l'article provenant de la source Math-Net.Ru
We introduce a classification of extensions of Johansson's minimal logic J that extends the classification of superintuitionistic logics proposed by T. Hosoi. It is proved that the layer number of any finitely axiomatizable logic is effectively computable. Every layer over J has a least logic. It is stated that each layer has finitely many maximal logics, and minimal and maximal logics of all layers are recognizable over J.
Keywords:
minimal logic, decidability, recognizable logic, Kripke frame.
@article{AL_2016_55_4_a4,
author = {L. L. Maksimova and V. F. Yun},
title = {Layers over minimal logic},
journal = {Algebra i logika},
pages = {449--464},
publisher = {mathdoc},
volume = {55},
number = {4},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2016_55_4_a4/}
}
L. L. Maksimova; V. F. Yun. Layers over minimal logic. Algebra i logika, Tome 55 (2016) no. 4, pp. 449-464. http://geodesic.mathdoc.fr/item/AL_2016_55_4_a4/