Periodic groups saturated with finite simple groups of types $U_3$ and~$L_3$
Algebra i logika, Tome 55 (2016) no. 4, pp. 441-448.

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose that $\mathfrak M$ is a set whose elements are simple three-dimensional unitary groups $U_3(q)$ and linear groups $L_3(q)$ over finite fields. We prove that a periodic group saturated with groups of $\mathfrak M$ is locally finite and isomorphic to $U_3(Q)$ or $L_3(Q)$ for some locally finite field $Q$.
Keywords: group saturated with set of groups, periodic group.
@article{AL_2016_55_4_a3,
     author = {D. V. Lytkina and A. A. Shlepkin},
     title = {Periodic groups saturated with finite simple groups of types $U_3$ and~$L_3$},
     journal = {Algebra i logika},
     pages = {441--448},
     publisher = {mathdoc},
     volume = {55},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2016_55_4_a3/}
}
TY  - JOUR
AU  - D. V. Lytkina
AU  - A. A. Shlepkin
TI  - Periodic groups saturated with finite simple groups of types $U_3$ and~$L_3$
JO  - Algebra i logika
PY  - 2016
SP  - 441
EP  - 448
VL  - 55
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2016_55_4_a3/
LA  - ru
ID  - AL_2016_55_4_a3
ER  - 
%0 Journal Article
%A D. V. Lytkina
%A A. A. Shlepkin
%T Periodic groups saturated with finite simple groups of types $U_3$ and~$L_3$
%J Algebra i logika
%D 2016
%P 441-448
%V 55
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2016_55_4_a3/
%G ru
%F AL_2016_55_4_a3
D. V. Lytkina; A. A. Shlepkin. Periodic groups saturated with finite simple groups of types $U_3$ and~$L_3$. Algebra i logika, Tome 55 (2016) no. 4, pp. 441-448. http://geodesic.mathdoc.fr/item/AL_2016_55_4_a3/

[1] D. V. Lytkina, L. R. Tukhvatullina, K. A. Filippov, “O periodicheskikh gruppakh, nasyschennykh konechnym mnozhestvom konechnykh prostykh grupp”, Sib. matem. zh., 49:2 (2008), 394–399 | MR | Zbl

[2] D. V. Lytkina, “O gruppakh, nasyschennykh konechnymi prostymi gruppami”, Algebra i logika, 48:5 (2009), 628–653 | MR | Zbl

[3] J. L. Alperin, R. Brauer, D. Gorenstein, “Finite groups with quasi-dihedral and wreathed Sylow 2-subgroups”, Trans. Am. Math. Soc., 151:1 (1970), 1–261 | MR | Zbl

[4] J. N. Bray, D. F. Holt, C. M. Roney-Dougal, The maximal subgroups of the lowdimensional finite classical groups, London Math. Soc. Lecture Note Ser., 407, Cambridge Univ. Press, Cambridge, 2013 | MR

[5] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of finite groups, Clarendon Press, Oxford, 1985 | MR | Zbl

[6] A. Kh. Zhurtov, “O regulyarnykh avtomorfizmakh poryadka 3 i parakh Frobeniusa”, Sib. matem. zh., 41:2 (2000), 329–338 | MR | Zbl

[7] A. V. Borovik, “Vlozheniya konechnykh grupp Shevalle i periodicheskie lineinye gruppy”, Sib. matem. zh., 24:6 (1983), 26–35 | MR | Zbl