Binary formulas in countably categorical weakly circularly minimal structures
Algebra i logika, Tome 55 (2016) no. 3, pp. 341-365.

Voir la notice de l'article provenant de la source Math-Net.Ru

Countably categorical weakly circularly minimal structures that are not $1$-transitive are studied. We give a characterization of the behavior of binary formulas acting on a set of realizations of a nonalgebraic $1$-type, and based on it, we present a complete description of countably categorical non-$1$-transitive weakly circularly minimal $n$-convex ($n>1$) almost binary theories of convexity rank $1$.
Keywords: circularly ordered structure, weak circular minimality, countable categoricity, convexity rank.
@article{AL_2016_55_3_a3,
     author = {B. Sh. Kulpeshov and A. B. Altaeva},
     title = {Binary formulas in countably categorical weakly circularly minimal structures},
     journal = {Algebra i logika},
     pages = {341--365},
     publisher = {mathdoc},
     volume = {55},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2016_55_3_a3/}
}
TY  - JOUR
AU  - B. Sh. Kulpeshov
AU  - A. B. Altaeva
TI  - Binary formulas in countably categorical weakly circularly minimal structures
JO  - Algebra i logika
PY  - 2016
SP  - 341
EP  - 365
VL  - 55
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2016_55_3_a3/
LA  - ru
ID  - AL_2016_55_3_a3
ER  - 
%0 Journal Article
%A B. Sh. Kulpeshov
%A A. B. Altaeva
%T Binary formulas in countably categorical weakly circularly minimal structures
%J Algebra i logika
%D 2016
%P 341-365
%V 55
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2016_55_3_a3/
%G ru
%F AL_2016_55_3_a3
B. Sh. Kulpeshov; A. B. Altaeva. Binary formulas in countably categorical weakly circularly minimal structures. Algebra i logika, Tome 55 (2016) no. 3, pp. 341-365. http://geodesic.mathdoc.fr/item/AL_2016_55_3_a3/

[1] M. Bhattacharjee, D. Macpherson, R. G. Möller, P. M. Neumann, Notes on infinite permutation groups, Lect. Notes Math., 1698, Springer-Verlag, Berlin, 1998 | DOI | MR | Zbl

[2] D. Macpherson, Ch. Steinhorn, “On variants of $o$-minimality”, Ann. Pure Appl. Logic, 79:2 (1996), 165–209 | DOI | MR | Zbl

[3] B. Sh. Kulpeshov, H. D. Macpherson, “Minimality conditions on circularly ordered structures”, Math. Log. Q., 51:4 (2005), 377–399 | DOI | MR | Zbl

[4] B. S. Baizhanov, B. Sh. Kulpeshov, “On behaviour of 2-formulas in weakly $o$-minimal theories”, Mathematical logic in Asia, Proc. 9th Asian log. conf. (Novosibirsk, Russia, August 16–19, 2005), eds. S. S. Goncharov et al., World Scientific, Hackensack, NJ, 2006, 31–40 | DOI | MR | Zbl

[5] B. Sh. Kulpeshov, “On $\aleph_0$-categorical weakly circularly minimal structures”, Math. Log. Q., 52:6 (2006), 555–574 | DOI | MR | Zbl

[6] B. Sh. Kulpeshov, “Opredelimye funktsii v $\aleph_0$-kategorichnykh slabo tsiklicheski minimalnykh strukturakh”, Sib. matem. zh., 50:2 (2009), 356–379 | MR | Zbl

[7] B. Sh. Kulpeshov, “O binarnosti $\aleph_0$-kategorichnykh slabo $o$-minimalnykh teorii”, Algebra i logika, 44:4 (2005), 459–473 | MR | Zbl

[8] B. Sh. Kulpeshov, “Binarnost $\aleph_0$-kategorichnykh slabo $o$-minimalnykh teorii ranga vypuklosti 1”, Sib. elektron. matem. izv., 3 (2006), 185–196 | MR | Zbl

[9] B. Sh. Kulpeshov, “Criterion for binarity of $\aleph_0$-categorical weakly $o$-minimal theories”, Ann. Pure Appl. Logic, 145:3 (2007), 354–367 | DOI | MR | Zbl