Existence and uniqueness of structures computable in polynomial time
Algebra i logika, Tome 55 (2016) no. 1, pp. 106-112.

Voir la notice de l'article provenant de la source Math-Net.Ru

Presented by Associate Editor S. S. Goncharov.
@article{AL_2016_55_1_a6,
     author = {P. E. Alaev},
     title = {Existence and uniqueness of structures computable in polynomial time},
     journal = {Algebra i logika},
     pages = {106--112},
     publisher = {mathdoc},
     volume = {55},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2016_55_1_a6/}
}
TY  - JOUR
AU  - P. E. Alaev
TI  - Existence and uniqueness of structures computable in polynomial time
JO  - Algebra i logika
PY  - 2016
SP  - 106
EP  - 112
VL  - 55
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2016_55_1_a6/
LA  - ru
ID  - AL_2016_55_1_a6
ER  - 
%0 Journal Article
%A P. E. Alaev
%T Existence and uniqueness of structures computable in polynomial time
%J Algebra i logika
%D 2016
%P 106-112
%V 55
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2016_55_1_a6/
%G ru
%F AL_2016_55_1_a6
P. E. Alaev. Existence and uniqueness of structures computable in polynomial time. Algebra i logika, Tome 55 (2016) no. 1, pp. 106-112. http://geodesic.mathdoc.fr/item/AL_2016_55_1_a6/

[1] D. Cenzer, J. B. Remmel, “Complexity and categoricity”, Inf. Comput., 140:1 (1998), 2–25 | DOI | MR | Zbl

[2] D. Cenzer, J. Remmel, “Polynomial-time versus recursive models”, Ann. Pure Appl. Logic, 54:1 (1991), 17–58 | DOI | MR | Zbl

[3] D. Cenzer, J. Remmel, “Polynomial-time abelian groups”, Ann. Pure Appl. Logic, 56:1–3 (1992), 313–363 | DOI | MR | Zbl

[4] D. Cenzer, J. B. Remmel, “Complexity theoretic model theory and algebra”, Handbook of recursive mathematics, v. 1, Stud. Logic Found. Math., 138, Recursive model theory, eds. Yu. L. Ershov et al., Elsevier, Amsterdam, 1998, 381–513 | DOI | MR | Zbl

[5] E. I. Latkin, “Polinomialnaya neavtoustoichivost. Algebraicheskii podkhod”, Logicheskie metody v programmirovanii, Vychisl. sist., 133, In-t matem. SO AN SSSR, Novosibirsk, 1990, 14–37 | MR

[6] E. I. Latkin, “Abstraktnyi funktsional, ogranichivayuschii algoritmicheskuyu slozhnost dlya lineinogo, polinomialnogo i drugikh skhozhikh klassov”, Strukturnye i slozhnostnye problemy vychislimosti, Vychislit. sist., 165, In-t matem. im. S. L. Soboleva SO RAN, Novosibirsk, 1999, 84–111 | MR

[7] S. S. Goncharov, “Algoritmicheskaya razmernost abelevykh grupp”, Tez. soobschenii XVII Vsesoyuz. algebr. konf. (Minsk, 14–17 sentyabrya 1983 g.), ch. 2

[8] S. T. Fedoryaev, “Rekursivno nesovmestnye algoritmicheskie problemy na $1$-konstruktiviziruemykh distributivnykh reshetkakh s otnositelnymi dopolneniyami”, Algebra i logika, 34:6 (1995), 667–680 | MR | Zbl

[9] S. T. Fedoryaev, “Schëtnost shiriny struktury algebraicheskoi svodimosti dlya modelei nekotorykh klassov”, Tr. IM SO RAN, 25, Nauka, Novosibirsk, 1993, 133–154 | MR

[10] B. M. Khusainov, “Ob algoritmicheskoi razmernosti unarov”, Algebra i logika, 27:4 (1988), 479–494 | MR | Zbl

[11] O. V. Kudinov, “Algebraicheskie zavisimosti i svodimosti konstruktivizatsii v universalnykh oblastyakh”, Tr. IM SO RAN, 25, Nauka, Novosibirsk, 1993, 74–81 | MR

[12] D. V. Lytkina, “Algebraicheski neekvivalentnye konstruktivizatsii beskonechnomernogo vektornogo prostranstva”, Algebra i logika, 29:6 (1990), 659–674 | MR | Zbl

[13] V. A. Uspenskii, A. L. Semenov, “Teoriya algoritmov: osnovnye otkrytiya i prilozheniya”, Algoritmy v sovremennoi matematike i ee prilozheniyakh, Mater. mezhd. simp. (Urgench, UzSSR, 1979), ch. 1, VTs SO AN SSSR, Novosibirsk, 1982, 99–342

[14] V. A. Uspenskii, A. L. Semenov, Teoriya algoritmov: osnovnye otkrytiya i prilozheniya, B-chka programmista, Nauka, M., 1987 | MR