Combining solutions for systems equations in semigroups with finite ideal
Algebra i logika, Tome 55 (2016) no. 1, pp. 87-105

Voir la notice de l'article provenant de la source Math-Net.Ru

A semigroup $S$ is called an equational domain if any finite union of algebraic sets over $S$ is again an algebraic set. We find necessary and sufficient conditions for a semigroup with a finite minimal two-sided ideal (in particular, a finite semigroup) to be an equational domain.
Keywords: semigroups, systems of equations.
Mots-clés : equational domains
@article{AL_2016_55_1_a5,
     author = {A. N. Shevlyakov},
     title = {Combining solutions for systems equations in semigroups with finite ideal},
     journal = {Algebra i logika},
     pages = {87--105},
     publisher = {mathdoc},
     volume = {55},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2016_55_1_a5/}
}
TY  - JOUR
AU  - A. N. Shevlyakov
TI  - Combining solutions for systems equations in semigroups with finite ideal
JO  - Algebra i logika
PY  - 2016
SP  - 87
EP  - 105
VL  - 55
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2016_55_1_a5/
LA  - ru
ID  - AL_2016_55_1_a5
ER  - 
%0 Journal Article
%A A. N. Shevlyakov
%T Combining solutions for systems equations in semigroups with finite ideal
%J Algebra i logika
%D 2016
%P 87-105
%V 55
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2016_55_1_a5/
%G ru
%F AL_2016_55_1_a5
A. N. Shevlyakov. Combining solutions for systems equations in semigroups with finite ideal. Algebra i logika, Tome 55 (2016) no. 1, pp. 87-105. http://geodesic.mathdoc.fr/item/AL_2016_55_1_a5/