Isomorphisms and algorithmic properties of structures with two equivalences
Algebra i logika, Tome 55 (2016) no. 1, pp. 75-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

Isomorphisms and algorithmic properties of structures with two equivalences are considered using methods (developed by the author) for determining the definability of a graph in a bipartite graph and in a structure with two equivalences, which respect algorithmic and syntactic properties of the original structure.
Keywords: computable structures, arithmetic and hyperarithmetic hierarchies, isomorphisms, Scott family
Mots-clés : definable relations.
@article{AL_2016_55_1_a4,
     author = {D. A. Tussupov},
     title = {Isomorphisms and algorithmic properties of structures with two equivalences},
     journal = {Algebra i logika},
     pages = {75--86},
     publisher = {mathdoc},
     volume = {55},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2016_55_1_a4/}
}
TY  - JOUR
AU  - D. A. Tussupov
TI  - Isomorphisms and algorithmic properties of structures with two equivalences
JO  - Algebra i logika
PY  - 2016
SP  - 75
EP  - 86
VL  - 55
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2016_55_1_a4/
LA  - ru
ID  - AL_2016_55_1_a4
ER  - 
%0 Journal Article
%A D. A. Tussupov
%T Isomorphisms and algorithmic properties of structures with two equivalences
%J Algebra i logika
%D 2016
%P 75-86
%V 55
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2016_55_1_a4/
%G ru
%F AL_2016_55_1_a4
D. A. Tussupov. Isomorphisms and algorithmic properties of structures with two equivalences. Algebra i logika, Tome 55 (2016) no. 1, pp. 75-86. http://geodesic.mathdoc.fr/item/AL_2016_55_1_a4/

[1] C. J. Ash, J. F. Knight, Computable structures and the hyperarithmetical hierarchy, Stud. Logic Found. Math., 144, Elsevier Sci. B.V., Amsterdam etc., 2000 | MR | Zbl

[2] I. A. Lavrov, “Effektivnaya neotdelimost mnozhestva tozhdestvenno istinnykh i mnozhestva konechno oproverzhimykh formul nekotorykh elementarnykh teorii”, Algebra i logika, 2:1 (1963), 5–18 | MR | Zbl

[3] I. Bucur, A. Deleanu, Introduction to the theory of categories and functors, Pure Appl. Math., 19, J. Wiley Sons, London–New York–Sydney, 1968 | MR

[4] S. Goncharov, V. Harizanov, J. Knight, C. McCoy, R. Miller, R. Solomon, “Enumerations in computable structure theory”, Ann. Pure Appl. Logic, 136:3 (2005), 219–246 | DOI | MR | Zbl

[5] S. S. Goncharov, “Isomorphisms and definable relations on computable models”, Logic colloquium 2005, Proc. of the annual European summer meeting of Assoc. Symbolic Logic (Athens, Greece, July 28 – August 3, 2005), Lect. Notes Log., 28, eds. C. Dimitracopoulos et al., Cambridge Univ. Press, Cambridge; Assoc. Symbolic Logic, Urbana, IL, 2008, 26–45 | MR | Zbl