Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2015_54_6_a5, author = {P. D'Aquino and S. Kuhlmann}, title = {A note on $\aleph_\alpha$-saturated $o$-minimal expansions of real closed fields}, journal = {Algebra i logika}, pages = {769--776}, publisher = {mathdoc}, volume = {54}, number = {6}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2015_54_6_a5/} }
P. D'Aquino; S. Kuhlmann. A note on $\aleph_\alpha$-saturated $o$-minimal expansions of real closed fields. Algebra i logika, Tome 54 (2015) no. 6, pp. 769-776. http://geodesic.mathdoc.fr/item/AL_2015_54_6_a5/
[1] P. Speissegger, “Lectures on $o$-minimality”, Lectures on algebraic model theory, Fields Inst. Monogr., 15, eds. B. Hart et al., Am. Math. Soc., Providence, RI, 2002, 47–65 | MR | Zbl
[2] J. C. Rosenstein, Linear Orderings, Academic Press, New York, 1982 | MR | Zbl
[3] N. L. Alling, S. Kuhlmann, “On $\eta_\alpha$-groups and fields”, Order, 11:1 (1994), 85–92 | DOI | MR | Zbl
[4] F.-V. Kuhlmann, S. Kuhlmann, M. Marshall, M. Zekavat, “Embedding ordered fields in formal power series fields”, J. Pure Appl. Algebra, 169:1 (2002), 71–90 | DOI | MR | Zbl
[5] S. Kuhlmann, Ordered exponential fields, Fields Inst. Monogr., 12, Am. Math. Soc., Providence, RI, 2000 | MR | Zbl
[6] S. Kuhlmann, “Groupes abéliens divisibles ordonnés”, Séminaire sur les structures algébriques ordonnées, Sélect. Expos. Sémin., Paris/Fr. 1984–1987, v. I, Publ. Math. Univ. Paris VII, 32, 1990, 3–14 | MR | Zbl
[7] Yu. L. Ershov, Kratno normirovannye polya, Sib. shkola algebry i logiki, Nauch. kniga, Novosibirsk, 2000; Yu. L. Ershov, Multi-valued fields, Sib. School Alg. Log., Kluwer Academic/Consultants Bureau, New York, 2001 | MR