A note on $\aleph_\alpha$-saturated $o$-minimal expansions of real closed fields
Algebra i logika, Tome 54 (2015) no. 6, pp. 769-776.

Voir la notice de l'article provenant de la source Math-Net.Ru

Presented by the Program Committee of the Conference “Mal'tsev Readings”.
@article{AL_2015_54_6_a5,
     author = {P. D'Aquino and S. Kuhlmann},
     title = {A note on $\aleph_\alpha$-saturated $o$-minimal expansions of real closed fields},
     journal = {Algebra i logika},
     pages = {769--776},
     publisher = {mathdoc},
     volume = {54},
     number = {6},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2015_54_6_a5/}
}
TY  - JOUR
AU  - P. D'Aquino
AU  - S. Kuhlmann
TI  - A note on $\aleph_\alpha$-saturated $o$-minimal expansions of real closed fields
JO  - Algebra i logika
PY  - 2015
SP  - 769
EP  - 776
VL  - 54
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2015_54_6_a5/
LA  - ru
ID  - AL_2015_54_6_a5
ER  - 
%0 Journal Article
%A P. D'Aquino
%A S. Kuhlmann
%T A note on $\aleph_\alpha$-saturated $o$-minimal expansions of real closed fields
%J Algebra i logika
%D 2015
%P 769-776
%V 54
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2015_54_6_a5/
%G ru
%F AL_2015_54_6_a5
P. D'Aquino; S. Kuhlmann. A note on $\aleph_\alpha$-saturated $o$-minimal expansions of real closed fields. Algebra i logika, Tome 54 (2015) no. 6, pp. 769-776. http://geodesic.mathdoc.fr/item/AL_2015_54_6_a5/

[1] P. Speissegger, “Lectures on $o$-minimality”, Lectures on algebraic model theory, Fields Inst. Monogr., 15, eds. B. Hart et al., Am. Math. Soc., Providence, RI, 2002, 47–65 | MR | Zbl

[2] J. C. Rosenstein, Linear Orderings, Academic Press, New York, 1982 | MR | Zbl

[3] N. L. Alling, S. Kuhlmann, “On $\eta_\alpha$-groups and fields”, Order, 11:1 (1994), 85–92 | DOI | MR | Zbl

[4] F.-V. Kuhlmann, S. Kuhlmann, M. Marshall, M. Zekavat, “Embedding ordered fields in formal power series fields”, J. Pure Appl. Algebra, 169:1 (2002), 71–90 | DOI | MR | Zbl

[5] S. Kuhlmann, Ordered exponential fields, Fields Inst. Monogr., 12, Am. Math. Soc., Providence, RI, 2000 | MR | Zbl

[6] S. Kuhlmann, “Groupes abéliens divisibles ordonnés”, Séminaire sur les structures algébriques ordonnées, Sélect. Expos. Sémin., Paris/Fr. 1984–1987, v. I, Publ. Math. Univ. Paris VII, 32, 1990, 3–14 | MR | Zbl

[7] Yu. L. Ershov, Kratno normirovannye polya, Sib. shkola algebry i logiki, Nauch. kniga, Novosibirsk, 2000; Yu. L. Ershov, Multi-valued fields, Sib. School Alg. Log., Kluwer Academic/Consultants Bureau, New York, 2001 | MR