Index sets of constructive models of finite and graph signatures that are autostable relative to strong constructivizations
Algebra i logika, Tome 54 (2015) no. 6, pp. 663-679

Voir la notice de l'article provenant de la source Math-Net.Ru

We estimate algorithmic complexity of the class of computable models of a finite and a graph signature that have a strong constructivization and are autostable relative to strong constructivizations.
Keywords: model, computable model, constructive model, autostability, index sets.
@article{AL_2015_54_6_a1,
     author = {S. S. Goncharov and M. I. Marchuk},
     title = {Index sets of constructive models of finite and graph signatures that are autostable relative to strong constructivizations},
     journal = {Algebra i logika},
     pages = {663--679},
     publisher = {mathdoc},
     volume = {54},
     number = {6},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2015_54_6_a1/}
}
TY  - JOUR
AU  - S. S. Goncharov
AU  - M. I. Marchuk
TI  - Index sets of constructive models of finite and graph signatures that are autostable relative to strong constructivizations
JO  - Algebra i logika
PY  - 2015
SP  - 663
EP  - 679
VL  - 54
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2015_54_6_a1/
LA  - ru
ID  - AL_2015_54_6_a1
ER  - 
%0 Journal Article
%A S. S. Goncharov
%A M. I. Marchuk
%T Index sets of constructive models of finite and graph signatures that are autostable relative to strong constructivizations
%J Algebra i logika
%D 2015
%P 663-679
%V 54
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2015_54_6_a1/
%G ru
%F AL_2015_54_6_a1
S. S. Goncharov; M. I. Marchuk. Index sets of constructive models of finite and graph signatures that are autostable relative to strong constructivizations. Algebra i logika, Tome 54 (2015) no. 6, pp. 663-679. http://geodesic.mathdoc.fr/item/AL_2015_54_6_a1/