Index sets of constructive models of finite and graph signatures that are autostable relative to strong constructivizations
Algebra i logika, Tome 54 (2015) no. 6, pp. 663-679.

Voir la notice de l'article provenant de la source Math-Net.Ru

We estimate algorithmic complexity of the class of computable models of a finite and a graph signature that have a strong constructivization and are autostable relative to strong constructivizations.
Keywords: model, computable model, constructive model, autostability, index sets.
@article{AL_2015_54_6_a1,
     author = {S. S. Goncharov and M. I. Marchuk},
     title = {Index sets of constructive models of finite and graph signatures that are autostable relative to strong constructivizations},
     journal = {Algebra i logika},
     pages = {663--679},
     publisher = {mathdoc},
     volume = {54},
     number = {6},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2015_54_6_a1/}
}
TY  - JOUR
AU  - S. S. Goncharov
AU  - M. I. Marchuk
TI  - Index sets of constructive models of finite and graph signatures that are autostable relative to strong constructivizations
JO  - Algebra i logika
PY  - 2015
SP  - 663
EP  - 679
VL  - 54
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2015_54_6_a1/
LA  - ru
ID  - AL_2015_54_6_a1
ER  - 
%0 Journal Article
%A S. S. Goncharov
%A M. I. Marchuk
%T Index sets of constructive models of finite and graph signatures that are autostable relative to strong constructivizations
%J Algebra i logika
%D 2015
%P 663-679
%V 54
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2015_54_6_a1/
%G ru
%F AL_2015_54_6_a1
S. S. Goncharov; M. I. Marchuk. Index sets of constructive models of finite and graph signatures that are autostable relative to strong constructivizations. Algebra i logika, Tome 54 (2015) no. 6, pp. 663-679. http://geodesic.mathdoc.fr/item/AL_2015_54_6_a1/

[1] S. S. Goncharov, Yu. L. Ershov, Konstruktivnye modeli, Sibirskaya shkola algebry i logiki, Nauchnaya kniga, Novosibirsk, 1999

[2] C. J. Ash, J. F. Knight, Computable structures and the hyperarithmetical hierarchy, Stud. Logic Found. Math., 144, Elsevier Sci. B.V., Amsterdam etc., 2000 | MR | Zbl

[3] S. S. Goncharov, Dzh. Nait, “Vychislimye strukturnye i antistrukturnye teoremy”, Algebra i logika, 41:6 (2002), 639–681 | MR | Zbl

[4] S. S. Goncharov, “Computability and computable models”, Mathematical problems from applied logic, v. II, Int. Math. Ser. (New York), 5, Logics for the XXIst century, eds. Dov M. Gabbay et al., Springer, New York, NY, 2007, 99–216 | DOI | MR | Zbl

[5] S. S. Goncharov, “Indeksnye mnozhestva pochti prostykh konstruktivnykh modelei”, Vestn. NGU. Ser. matem., mekh., inform., 13:3 (2013), 38–52 | Zbl

[6] E. B. Fokina, “Indeksnye mnozhestva razreshimykh modelei”, Sib. matem. zh., 48:5 (2007), 1167–1179 | MR | Zbl

[7] E. N. Pavlovskii, “Otsenka algoritmicheskoi slozhnosti klassov vychislimykh modelei”, Sib. matem. zh., 49:3 (2008), 635–649 | MR | Zbl

[8] E. N. Pavlovskii, “Indeksnye mnozhestva prostykh modelei”, Sib. elektron. matem. izv., 5 (2008), 200–210 | MR

[9] N. A. Bazhenov, “O kategorichnosti bulevykh algebr tipa $B(\omega^\alpha\times\eta)$ v giperarifmeticheskoi ierarkhii”, Vestn. NGU. Ser. matem., mekh., inform., 12:3 (2012), 35–45 | Zbl

[10] N. A. Bazhenov, “O $\Delta^0_2$-kategorichnosti bulevykh algebr”, Vestn. NGU. Ser. matem., mekh., inform., 13:2 (2013), 3–14 | Zbl

[11] S. S. Goncharov, M. I. Marchuk, “Indeksnye mnozhestva avtoustoichivykh otnositelno silnykh konstruktivizatsii konstruktivnykh modelei ogranichennoi signatury”, Algebra i logika, 54:2 (2015), 163–192 | Zbl

[12] A. T. Nurtazin, Vychislimye klassy i algebraicheskie kriterii avtoustoichivosti, Diss. kand. fiz.-mat. nauk, Alma-Ata, 1974

[13] S. S. Goncharov, “Problema chisla neavtoekvivalentnykh konstruktivizatsii”, Algebra i logika, 19:6 (1980), 621–639 | MR

[14] A. T. Nurtazin, “Silnye i slabye konstruktivizatsii i vychislimye semeistva”, Algebra i logika, 13:3 (1974), 311–323 | MR | Zbl