Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2015_54_5_a5, author = {A. N. Frolov}, title = {Effective categoricity of computable linear orderings}, journal = {Algebra i logika}, pages = {638--642}, publisher = {mathdoc}, volume = {54}, number = {5}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2015_54_5_a5/} }
A. N. Frolov. Effective categoricity of computable linear orderings. Algebra i logika, Tome 54 (2015) no. 5, pp. 638-642. http://geodesic.mathdoc.fr/item/AL_2015_54_5_a5/
[1] S. S. Goncharov, “Avtoustoichivost i vychislimye semeistva konstruktivizatsii”, Algebra i logika, 14:6 (1975), 647–680 | MR | Zbl
[2] S. S. Goncharov, V. D. Dzgoev, “Avtoustoichivost modelei”, Algebra i logika, 19:1 (1980), 45–58 | MR | Zbl
[3] J. B. Remmel, “Recursively categorical linear orderings”, Proc. Am. Math. Soc., 83:2 (1981), 387–391 | DOI | MR | Zbl
[4] C. McCoy, “$\Delta^0_2$-categoricity in Boolean algebras and linear orderings”, Ann. Pure Appl. Logic, 119:1–3 (2003), 85–120 | DOI | MR | Zbl
[5] A. N. Frolov, “$\Delta^2_n$-categorical linear ordering”, Bull. Symbolic Logic, 14:1 (2008), 140
[6] R. G. Downey, J. F. Knight, “Orderings with $\alpha$-th jump degree $0^{(\alpha)}$”, Proc. Am. Math. Soc., 114:2 (1992), 545–552 | MR | Zbl
[7] A. N. Frolov, “$\Delta^0_2$-kopii lineinykh poryadkov”, Algebra i logika, 45:3 (2006), 354–370 | MR | Zbl
[8] A. N. Frolov, “Lineinye poryadki. Teoremy kodirovaniya”, Uchën. zap. Kazan. gos. un-ta. Ser. fiz.-matem. n., 154, no. 2, 2012, 142–151
[9] E. B. Fokina, I. Kalimullin, R. Miller, “Degrees of categoricity of computable structures”, Arch. Math. Logic, 49:1 (2010), 51–67 | DOI | MR | Zbl
[10] A. N. Frolov, “Predstavleniya otnosheniya sosedstva vychislimogo lineinogo poryadka”, Izv. vuzov. Matem., 2010, no. 7, 73–85 | MR | Zbl