Algebras with identical algebraic sets
Algebra i logika, Tome 54 (2015) no. 4, pp. 493-502.

Voir la notice de l'article provenant de la source Math-Net.Ru

We look into the relationship between the so-called additive universal algebras $\mathfrak A_0=\langle A;\sigma_0\rangle$ and $\mathfrak A_1=\langle A;\sigma_1\rangle$ with common universe $A$ having the same algebraic sets ($\operatorname{Alg}_n\mathfrak A_0=\operatorname{Alg}_n\mathfrak A_1$ for any $n\in\omega$) and subalgebras ($\operatorname{Sub}\mathfrak A_0=\operatorname{Sub}\mathfrak A_1$).
Keywords: algebraic geometry of universal algebras, algebraic set, additive universal algebra.
@article{AL_2015_54_4_a4,
     author = {A. G. Pinus},
     title = {Algebras with identical algebraic sets},
     journal = {Algebra i logika},
     pages = {493--502},
     publisher = {mathdoc},
     volume = {54},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2015_54_4_a4/}
}
TY  - JOUR
AU  - A. G. Pinus
TI  - Algebras with identical algebraic sets
JO  - Algebra i logika
PY  - 2015
SP  - 493
EP  - 502
VL  - 54
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2015_54_4_a4/
LA  - ru
ID  - AL_2015_54_4_a4
ER  - 
%0 Journal Article
%A A. G. Pinus
%T Algebras with identical algebraic sets
%J Algebra i logika
%D 2015
%P 493-502
%V 54
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2015_54_4_a4/
%G ru
%F AL_2015_54_4_a4
A. G. Pinus. Algebras with identical algebraic sets. Algebra i logika, Tome 54 (2015) no. 4, pp. 493-502. http://geodesic.mathdoc.fr/item/AL_2015_54_4_a4/

[1] B. I. Plotkin, “Nekotorye ponyatiya algebraicheskoi geometrii v universalnoi algebre”, Algebra i analiz, 9:4 (1997), 224–248 | MR | Zbl

[2] E. Yu. Daniyarova, A. G. Myasnikov, V. N. Remeslennikov, “Algebraicheskaya geometriya nad algebraicheskimi sistemami. II. Osnovaniya”, Fundam. prikl. matem., 17:1 (2011/2012), 65–106 | MR

[3] E. Yu. Daniyarova, A. G. Myasnikov, V. N. Remeslennikov, “Algebraicheskaya geometriya nad algebraicheskimi sistemami. IV. Ekvatsionalnye oblasti i ko-oblasti”, Algebra i logika, 49:6 (2010), 715–756 | MR

[4] A. G. Pinus, “O geometricheski blizkikh algebrakh”, Algebra i teoriya modelei, 7, NGTU, Novosibirsk, 2009, 85–95

[5] A. G. Pinus, “O reshetkakh algebraicheskikh podmnozhestv universalnykh algebr”, Algebra i teoriya modelei, 8, NGTU, Novosibirsk, 2011, 60–66

[6] A. G. Pinus, “Ob universalnykh algebrakh s identichnymi proizvodnymi ob'ektami (kongruentsiyami, algebraicheskimi mnozhestvami)”, Sib. elektron. matem. izv., 11 (2014), 752–758 | Zbl

[7] A. G. Pinus, “Vnutrennie gomomorfizmy i pozitivno-uslovnye termy”, Algebra i logika, 40:2 (2001), 158–173 | MR | Zbl

[8] A. G. Pinus, Uslovnye termy i ikh primenenie v algebre i teorii vychislenii, NGTU, Novosibirsk, 2002