Algebras with identical algebraic sets
Algebra i logika, Tome 54 (2015) no. 4, pp. 493-502

Voir la notice de l'article provenant de la source Math-Net.Ru

We look into the relationship between the so-called additive universal algebras $\mathfrak A_0=\langle A;\sigma_0\rangle$ and $\mathfrak A_1=\langle A;\sigma_1\rangle$ with common universe $A$ having the same algebraic sets ($\operatorname{Alg}_n\mathfrak A_0=\operatorname{Alg}_n\mathfrak A_1$ for any $n\in\omega$) and subalgebras ($\operatorname{Sub}\mathfrak A_0=\operatorname{Sub}\mathfrak A_1$).
Keywords: algebraic geometry of universal algebras, algebraic set, additive universal algebra.
@article{AL_2015_54_4_a4,
     author = {A. G. Pinus},
     title = {Algebras with identical algebraic sets},
     journal = {Algebra i logika},
     pages = {493--502},
     publisher = {mathdoc},
     volume = {54},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2015_54_4_a4/}
}
TY  - JOUR
AU  - A. G. Pinus
TI  - Algebras with identical algebraic sets
JO  - Algebra i logika
PY  - 2015
SP  - 493
EP  - 502
VL  - 54
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2015_54_4_a4/
LA  - ru
ID  - AL_2015_54_4_a4
ER  - 
%0 Journal Article
%A A. G. Pinus
%T Algebras with identical algebraic sets
%J Algebra i logika
%D 2015
%P 493-502
%V 54
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2015_54_4_a4/
%G ru
%F AL_2015_54_4_a4
A. G. Pinus. Algebras with identical algebraic sets. Algebra i logika, Tome 54 (2015) no. 4, pp. 493-502. http://geodesic.mathdoc.fr/item/AL_2015_54_4_a4/