Totally $P$-stable Abelian groups
Algebra i logika, Tome 54 (2015) no. 4, pp. 463-492.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a complete description of Abelian groups that are totally $P$-stable for the following four natural types of subgroups: arbitrary subgroups, pure subgroups, elementary subsystems, and algebraically closed subgroups.
Keywords: Abelian group, totally $P$-stable group.
@article{AL_2015_54_4_a3,
     author = {E. A. Palyutin},
     title = {Totally $P$-stable {Abelian} groups},
     journal = {Algebra i logika},
     pages = {463--492},
     publisher = {mathdoc},
     volume = {54},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2015_54_4_a3/}
}
TY  - JOUR
AU  - E. A. Palyutin
TI  - Totally $P$-stable Abelian groups
JO  - Algebra i logika
PY  - 2015
SP  - 463
EP  - 492
VL  - 54
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2015_54_4_a3/
LA  - ru
ID  - AL_2015_54_4_a3
ER  - 
%0 Journal Article
%A E. A. Palyutin
%T Totally $P$-stable Abelian groups
%J Algebra i logika
%D 2015
%P 463-492
%V 54
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2015_54_4_a3/
%G ru
%F AL_2015_54_4_a3
E. A. Palyutin. Totally $P$-stable Abelian groups. Algebra i logika, Tome 54 (2015) no. 4, pp. 463-492. http://geodesic.mathdoc.fr/item/AL_2015_54_4_a3/

[1] E. A. Palyutin, “$P$-stabilnye abelevy gruppy”, Algebra i logika, 52:5 (2013), 606–631 | MR | Zbl

[2] E. A. Palyutin, “$P$-spektry abelevykh grupp”, Algebra i logika, 53:2 (2014), 216–255 | MR | Zbl

[3] L. Fuks, Beskonechnye abelevy gruppy, v. 1, Mir, M., 1974

[4] Yu. L. Ershov, E. A. Palyutin, Matematicheskaya logika, 6-e izd., Fizmatlit, M., 2011

[5] W. Hodges, Model theory, Encycl. Math. Appl., 42, Cambridge Univ. Press, Cambridge, 1993 | MR | Zbl

[6] W. Szmielew, “Elementary properties of Abelian groups”, Fundam. Math., 41 (1955), 203–271 | MR | Zbl

[7] E. A. Palyutin, “$E^*$-stabilnye teorii”, Algebra i logika, 42:2 (2003), 194–210 | MR | Zbl

[8] M. Ziegler, “Model theory of modules”, Ann. Pure Appl. Logic, 26:2 (1984), 149–213 | DOI | MR | Zbl