Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2015_54_4_a3, author = {E. A. Palyutin}, title = {Totally $P$-stable {Abelian} groups}, journal = {Algebra i logika}, pages = {463--492}, publisher = {mathdoc}, volume = {54}, number = {4}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2015_54_4_a3/} }
E. A. Palyutin. Totally $P$-stable Abelian groups. Algebra i logika, Tome 54 (2015) no. 4, pp. 463-492. http://geodesic.mathdoc.fr/item/AL_2015_54_4_a3/
[1] E. A. Palyutin, “$P$-stabilnye abelevy gruppy”, Algebra i logika, 52:5 (2013), 606–631 | MR | Zbl
[2] E. A. Palyutin, “$P$-spektry abelevykh grupp”, Algebra i logika, 53:2 (2014), 216–255 | MR | Zbl
[3] L. Fuks, Beskonechnye abelevy gruppy, v. 1, Mir, M., 1974
[4] Yu. L. Ershov, E. A. Palyutin, Matematicheskaya logika, 6-e izd., Fizmatlit, M., 2011
[5] W. Hodges, Model theory, Encycl. Math. Appl., 42, Cambridge Univ. Press, Cambridge, 1993 | MR | Zbl
[6] W. Szmielew, “Elementary properties of Abelian groups”, Fundam. Math., 41 (1955), 203–271 | MR | Zbl
[7] E. A. Palyutin, “$E^*$-stabilnye teorii”, Algebra i logika, 42:2 (2003), 194–210 | MR | Zbl
[8] M. Ziegler, “Model theory of modules”, Ann. Pure Appl. Logic, 26:2 (1984), 149–213 | DOI | MR | Zbl