Elements of algebraic geometry over a free semilattice
Algebra i logika, Tome 54 (2015) no. 3, pp. 399-420

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that every consistent system of equations over a free semilattice of arbitrary rank is equivalent to its finite subsystem. Furthermore, irreducible algebraic sets are studied, and we look at the consistency problem for systems of equations over free semilattices.
Keywords: algebraic geometry, free semilattice, system of equations over free semilattice.
@article{AL_2015_54_3_a5,
     author = {A. N. Shevlyakov},
     title = {Elements of algebraic geometry over a~free semilattice},
     journal = {Algebra i logika},
     pages = {399--420},
     publisher = {mathdoc},
     volume = {54},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2015_54_3_a5/}
}
TY  - JOUR
AU  - A. N. Shevlyakov
TI  - Elements of algebraic geometry over a free semilattice
JO  - Algebra i logika
PY  - 2015
SP  - 399
EP  - 420
VL  - 54
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2015_54_3_a5/
LA  - ru
ID  - AL_2015_54_3_a5
ER  - 
%0 Journal Article
%A A. N. Shevlyakov
%T Elements of algebraic geometry over a free semilattice
%J Algebra i logika
%D 2015
%P 399-420
%V 54
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2015_54_3_a5/
%G ru
%F AL_2015_54_3_a5
A. N. Shevlyakov. Elements of algebraic geometry over a free semilattice. Algebra i logika, Tome 54 (2015) no. 3, pp. 399-420. http://geodesic.mathdoc.fr/item/AL_2015_54_3_a5/