Elements of algebraic geometry over a~free semilattice
Algebra i logika, Tome 54 (2015) no. 3, pp. 399-420.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that every consistent system of equations over a free semilattice of arbitrary rank is equivalent to its finite subsystem. Furthermore, irreducible algebraic sets are studied, and we look at the consistency problem for systems of equations over free semilattices.
Keywords: algebraic geometry, free semilattice, system of equations over free semilattice.
@article{AL_2015_54_3_a5,
     author = {A. N. Shevlyakov},
     title = {Elements of algebraic geometry over a~free semilattice},
     journal = {Algebra i logika},
     pages = {399--420},
     publisher = {mathdoc},
     volume = {54},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2015_54_3_a5/}
}
TY  - JOUR
AU  - A. N. Shevlyakov
TI  - Elements of algebraic geometry over a~free semilattice
JO  - Algebra i logika
PY  - 2015
SP  - 399
EP  - 420
VL  - 54
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2015_54_3_a5/
LA  - ru
ID  - AL_2015_54_3_a5
ER  - 
%0 Journal Article
%A A. N. Shevlyakov
%T Elements of algebraic geometry over a~free semilattice
%J Algebra i logika
%D 2015
%P 399-420
%V 54
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2015_54_3_a5/
%G ru
%F AL_2015_54_3_a5
A. N. Shevlyakov. Elements of algebraic geometry over a~free semilattice. Algebra i logika, Tome 54 (2015) no. 3, pp. 399-420. http://geodesic.mathdoc.fr/item/AL_2015_54_3_a5/

[1] S. Rudeanu, Lattice functions and equations, Discrete Math. Theor. Comput. Sci., Springer-Verlag, London, 2001 | MR | Zbl

[2] E. Daniyarova, A. Myasnikov, V. Remeslennikov, “Unification theorems in algebraic geometry”, Aspects of infinite groups, A Festschrift in honor of A. Gaglione, Papers of the conf. (Fairfield, USA, March 2007 in honour of A. Gaglione's 60th birthday), Algebra Discr. Math. (Hackensack), 1, eds. B. Fine et al., World Sci., Hackensack, NJ, 2008, 80–111 | MR | Zbl

[3] E. Yu. Daniyarova, A. G. Myasnikov, V. N. Remeslennikov, “Algebraicheskaya geometriya nad algebraicheskimi sistemami. II. Osnovaniya”, Fundam. prikl. matem., 17:1 (2011/2012), 65–106 | MR

[4] P. V. Morar, A. N. Shevlyakov, “Algebraic geometry over the additive monoid of natural numbers: Systems of coefficient free equations”, Combinatorial and geometric group theory, Dortmund and Ottawa–Montreal conferences, Trends Math., eds. O. Bogopolski et al., Birkhauser, Basel, 2010, 261–278 | MR | Zbl

[5] A. N. Shevlyakov, “Algebraicheskaya geometriya nad monoidom naturalnykh chisel. Neprivodimye algebraicheskie mnozhestva”, Tr. IMM UrO RAN, 16, no. 2, 2010, 258–269

[6] A. N. Shevlyakov, “Algebraic geometry over natural numbers. The classification of coordinate monoids”, Groups Complex. Cryptol., 2:1 (2010), 91–111 | DOI | MR | Zbl

[7] A. N. Shevlyakov, “Commutative idempotent semigroups at the service of universal algebraic geometry”, Southeast Asian Bull. Math., 35:1 (2011), 111–136 | MR | Zbl