Complexity of quasivariety lattices
Algebra i logika, Tome 54 (2015) no. 3, pp. 381-398.

Voir la notice de l'article provenant de la source Math-Net.Ru

If a quasivariety $\mathbf A$ of algebraic systems of finite signature satisfies some generalization of a sufficient condition for $Q$-universality treated by M. E. Adams and W. A. Dziobiak, then, for any at most countable set $\{\mathcal S_i\mid i\in I\}$ of finite semilattices, the lattice $\prod_{i\in I}\operatorname{Sub}(\mathcal S_i)$ is a homomorphic image of some sublattice of a quasivariety lattice $\operatorname{Lq}(\mathbf A)$. Specifically, there exists a subclass $\mathbf{K\subseteq A}$ such that the problem of embedding a finite lattice in a lattice $\operatorname{Lq}(\mathbf K)$ of $\mathbf K$-quasivarieties is undecidable. This, in particular, implies a recent result of A. M. Nurakunov.
Keywords: computable set, lattice, quasivariety, $Q$-universality, undecidable problem, universal class, variety.
@article{AL_2015_54_3_a4,
     author = {M. V. Schwidefsky},
     title = {Complexity of quasivariety lattices},
     journal = {Algebra i logika},
     pages = {381--398},
     publisher = {mathdoc},
     volume = {54},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2015_54_3_a4/}
}
TY  - JOUR
AU  - M. V. Schwidefsky
TI  - Complexity of quasivariety lattices
JO  - Algebra i logika
PY  - 2015
SP  - 381
EP  - 398
VL  - 54
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2015_54_3_a4/
LA  - ru
ID  - AL_2015_54_3_a4
ER  - 
%0 Journal Article
%A M. V. Schwidefsky
%T Complexity of quasivariety lattices
%J Algebra i logika
%D 2015
%P 381-398
%V 54
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2015_54_3_a4/
%G ru
%F AL_2015_54_3_a4
M. V. Schwidefsky. Complexity of quasivariety lattices. Algebra i logika, Tome 54 (2015) no. 3, pp. 381-398. http://geodesic.mathdoc.fr/item/AL_2015_54_3_a4/

[1] A. M. Nurakunov, “Unreasonable lattices of quasivarieties”, Internat. J. Algebra Comput., 22:3 (2012), Paper No. 1250006, 17 pp. | DOI | MR

[2] A. M. Nurakunov, “Reshëtki kvazimnogoobrazii tochechnykh abelevykh grupp”, Algebra i logika, 53:3 (2014), 372–400 | MR | Zbl

[3] M. V. Sapir, “The lattice of quasivarieties of semigroups”, Algebra Univers., 21:2/3 (1985), 172–180 | DOI | MR | Zbl

[4] M. E. Adams, W. Dziobiak, “$\mathcal Q$-universal quasivarieties of algebras”, Proc. Am. Math. Soc., 120:4 (1994), 1053–1059 | MR | Zbl

[5] M. E. Adams, W. Dziobiak, “Lattice of quasivarieties of 3-element algebras”, J. Algebra, 166:1 (1994), 181–210 | DOI | MR | Zbl

[6] M. E. Adams, W. Dziobiak, “Quasivarieties of distributive lattices with a quantifier”, Discrete Math., 135:1–3 (1994), 15–28 | DOI | MR | Zbl

[7] M. E. Adams, W. Dziobiak, “Joins of minimal quasivarieties”, Stud. Log., 54:3 (1995), 371–389 | DOI | MR | Zbl

[8] M. E. Adams, W. Dziobiak, “Finite-to-finite universal quasivarieties are $\mathcal Q$-universal”, Algebra Univers., 46:1/2 (2001), 253–283 | DOI | MR | Zbl

[9] M. E. Adams, W. Dziobiak, “The lattice of quasivarieties of undirected graphs”, Algebra Univers., 47:1 (2002), 7–11 | DOI | MR | Zbl

[10] M. E. Adams, W. Dziobiak, “$\mathcal Q$-universal varieties of bounded lattices”, Algebra Univers., 48:3 (2002), 333–356 | DOI | MR | Zbl

[11] M. E. Adams, W. Dziobiak, “Quasivarieties of idempotent semigroups”, Int. J. Algebra Comput., 13:6 (2003), 733–752 | DOI | MR | Zbl

[12] V. A. Gorbunov, “Stroenie reshetok mnogoobrazii i reshetok kvazimnogoobrazii: skhodstvo i razlichie. II”, Algebra i logika, 34:4 (1995), 369–397 | MR | Zbl

[13] V. A. Gorbunov, Algebraicheskaya teoriya kvazimnogoobrazii, Sibirskaya shkola algebry i logiki, Nauch. kniga, Novosibirsk, 1999

[14] A. V. Kravchenko, “O reshetochnoi slozhnosti kvazimnogoobrazii grafov i endografov”, Algebra i logika, 36:3 (1997), 273–281 | MR | Zbl

[15] A. V. Kravchenko, “Slozhnost reshetok kvazimnogoobrazii dlya mnogoobrazii unarnykh algebr”, Matem. tr., 4:2 (2001), 113–127 | MR | Zbl

[16] A. V. Kravchenko, “$\mathcal Q$-universalnye kvazimnogoobraziya grafov”, Algebra i logika, 41:3 (2002), 311–325 | MR | Zbl

[17] A. V. Kravchenko, “On the lattices of quasivarieties of differential groupoids”, Commentat. Math. Univ. Carol., 49:1 (2008), 11–17 | MR | Zbl

[18] A. V. Kravchenko, “Slozhnost reshetok kvazimnogoobrazii dlya mnogoobrazii differentsialnykh gruppoidov”, Matem. tr., 12:1 (2009), 26–39 | MR | Zbl

[19] A. V. Kravchenko, “Slozhnost reshetok kvazimnogoobrazii dlya mnogoobrazii differentsialnykh gruppoidov. II”, Matem. tr., 15:2 (2012), 89–99 | MR | Zbl

[20] A. V. Kravchenko, “Minimalnye kvazimnogoobraziya differentsialnykh gruppoidov s nenulevym umnozheniem”, Sib. elektron. matem. izv., 9 (2012), 201–207 http://semr.math.nsc.ru | MR

[21] M. V. Schwidefsky, A. Zamojska-Dzienio, “Lattices of subclasses. II”, Int. J. Algebra Comput., 24:8 (2014), 1099–1126 | DOI | MR | Zbl

[22] W. Dziobiak, Selected topics in quasivarieties of algebraic systems, manuscript, 1997

[23] V. I. Tumanov, Dostatochnye usloviya vlozhimosti svobodnoi reshetki v reshetki kvazimnogoobrazii, Preprint No 40, In-t matem. SO AN SSSR, 1988

[24] G. Birkhoff, “Universal algebra”, Proc. First Canadian Math. Congr. (Montreal, 1945), Univ. of Toronto Press, Toronto, 1946, 310–326 | MR | Zbl

[25] A. I. Maltsev, “O nekotorykh pogranichnykh voprosakh algebry i logiki”, Tr. Mezhd. kongressa matematikov (Moskva, 1966), Mir, M., 1968, 217–231

[26] V. A. Gorbunov, V. I. Tumanov, “Stroenie reshetok kvazimnogoobrazii”, Matematicheskaya logika i teoriya algoritmov, Trudy In-ta matem. SO AN SSSR, 2, Nauka, Novosibirsk, 1982, 12–44 | MR

[27] W. Dziobiak, “On subquasivariety lattices of some varieties related with distributive $p$-algebras”, Algebra Univers., 21:1 (1985), 62–67 | DOI | MR | Zbl

[28] M. E. Adams, W. Dziobiak, M. Gould, J. Schmid, “Quasivarieties of pseuocomplemented semilattices”, Fund. Math., 146:3 (1995), 295–312 | MR | Zbl

[29] W. Dziobiak, “On lattice identities satisfied in subquasivariety lattices of varieties of modular lattices”, Algebra Univers., 22:2/3 (1986), 205–214 | DOI | MR | Zbl

[30] M. E. Adams, V. Koubek, J. Sichler, “Homomorphisms and endomorphisms of distributive lattices”, Houston J. Math., 11 (1985), 129–145 | MR | Zbl

[31] V. Koubek, “Universal expansion of semigroup varieties by regular involution”, Semigroup Forum, 46:2 (1993), 152–159 | DOI | MR | Zbl

[32] Z. Hedrlín, A. Pultr, “On full embeddings of categories of algebras”, Ill. J. Math., 10 (1966), 392–406 | MR | Zbl

[33] M. V. Semenova, A. Zamoiska-Dzhenio, “O reshëtkakh podklassov”, Sib. matem. zh., 53:5 (2012), 1111–1132 | MR | Zbl

[34] A. M. Nurakunov, M. V. Semenova, A. Zamojska-Dzienio, “On lattices connected with various types of classes of algebraic structures”, Uchën. zap. Kazan. gos. un-ta. Ser. Fiz.-matem. nauki, 154, no. 2, Izd-vo Kazanskogo un-ta, Kazan, 2012, 167–179

[35] M. S. Sheremet, “Quasivarieties of Cantor algebras”, Algebra Univers., 46:1/2 (2001), 193–201 | DOI | MR | Zbl

[36] M. E. Adams, J. Sichler, “Homomorphisms of unary algebras with a given quotient”, Algebra Univers., 27:2 (1990), 194–219 | DOI | MR | Zbl

[37] V. Dzëbyak, “Kvazimnogoobraziya polureshetok Sugikhara s involyutsiei”, Algebra i logika, 39:1 (2000), 47–65 | MR | Zbl

[38] P. Goralčik, V. Koubek, J. Sichler, “Universal varieties of $(0,1)$-lattices”, Can. J. Math., 42:3 (1990), 470–490 | DOI | MR | Zbl

[39] V. K. Kartashov, “O reshetkakh kvazimnogoobrazii unarov”, Sib. matem. zh., 26:3 (1985), 173–193 | MR

[40] V. Koubek, J. Sichler, “Universal varieties of semigroups”, J. Aust. Math. Soc. Ser. A, 36 (1984), 143–152 | DOI | MR | Zbl

[41] S. V. Sizyi, “Kvazimnogoobraziya grafov”, Sib. matem. zh., 35:4 (1994), 879–892 | MR | Zbl

[42] M. P. Tropin, “Vlozhimost svobodnoi reshetki v reshetku kvazimnogoobrazii distributivnykh reshetok s psevdodopolneniyami”, Algebra i logika, 22:2 (1983), 159–167 | MR | Zbl