Complexity of quasivariety lattices
Algebra i logika, Tome 54 (2015) no. 3, pp. 381-398

Voir la notice de l'article provenant de la source Math-Net.Ru

If a quasivariety $\mathbf A$ of algebraic systems of finite signature satisfies some generalization of a sufficient condition for $Q$-universality treated by M. E. Adams and W. A. Dziobiak, then, for any at most countable set $\{\mathcal S_i\mid i\in I\}$ of finite semilattices, the lattice $\prod_{i\in I}\operatorname{Sub}(\mathcal S_i)$ is a homomorphic image of some sublattice of a quasivariety lattice $\operatorname{Lq}(\mathbf A)$. Specifically, there exists a subclass $\mathbf{K\subseteq A}$ such that the problem of embedding a finite lattice in a lattice $\operatorname{Lq}(\mathbf K)$ of $\mathbf K$-quasivarieties is undecidable. This, in particular, implies a recent result of A. M. Nurakunov.
Keywords: computable set, lattice, quasivariety, $Q$-universality, undecidable problem, universal class, variety.
@article{AL_2015_54_3_a4,
     author = {M. V. Schwidefsky},
     title = {Complexity of quasivariety lattices},
     journal = {Algebra i logika},
     pages = {381--398},
     publisher = {mathdoc},
     volume = {54},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2015_54_3_a4/}
}
TY  - JOUR
AU  - M. V. Schwidefsky
TI  - Complexity of quasivariety lattices
JO  - Algebra i logika
PY  - 2015
SP  - 381
EP  - 398
VL  - 54
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2015_54_3_a4/
LA  - ru
ID  - AL_2015_54_3_a4
ER  - 
%0 Journal Article
%A M. V. Schwidefsky
%T Complexity of quasivariety lattices
%J Algebra i logika
%D 2015
%P 381-398
%V 54
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2015_54_3_a4/
%G ru
%F AL_2015_54_3_a4
M. V. Schwidefsky. Complexity of quasivariety lattices. Algebra i logika, Tome 54 (2015) no. 3, pp. 381-398. http://geodesic.mathdoc.fr/item/AL_2015_54_3_a4/