$\mathfrak F_\tau$-embedded and $\mathfrak F_{\tau,\Phi}$-embedded subgroups of finite groups
Algebra i logika, Tome 54 (2015) no. 3, pp. 351-380

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathfrak F$ be a nonempty formation of groups, $\tau$ a subgroup functor, and $H$ a $p$-subgroup of a finite group $G$. Suppose also that $\bar G=G/H_G$ and $\bar H=H/H_G$. We say that $H$ is $\mathfrak F_\tau$-embedded ($\mathfrak F_{\tau,\Phi}$-embedded) in $G$ if, for some quasinormal subgroup $\bar T$ of $\bar G$ and some $\tau$-subgroup $\bar S$ of $\bar G$ contained in $\bar H$, the subgroup $\bar H\bar T$ is $S$-quasinormal in $\bar G$ and $\bar H\cap\bar T\le\bar SZ_\mathfrak F(\bar G)$ (resp., $\bar H\cap\bar T\le\bar SZ_{\mathfrak F,\Phi}(\bar G)$). Using the notions of $\mathfrak F_\tau$-embedded and $\mathfrak F_{\tau,\Phi}$-embedded subgroups, we give some characterizations of the structure of finite groups. A number of earlier concepts and related results are further developed and unified.
Keywords: finite group, subgroup functor, $\mathfrak F_\tau$-embedded subgroup, $\mathfrak F_{\tau,\Phi}$-embedded subgroup, supersoluble group.
@article{AL_2015_54_3_a3,
     author = {X. Chen and W. Guo and A. N. Skiba},
     title = {$\mathfrak F_\tau$-embedded and $\mathfrak F_{\tau,\Phi}$-embedded subgroups of finite groups},
     journal = {Algebra i logika},
     pages = {351--380},
     publisher = {mathdoc},
     volume = {54},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2015_54_3_a3/}
}
TY  - JOUR
AU  - X. Chen
AU  - W. Guo
AU  - A. N. Skiba
TI  - $\mathfrak F_\tau$-embedded and $\mathfrak F_{\tau,\Phi}$-embedded subgroups of finite groups
JO  - Algebra i logika
PY  - 2015
SP  - 351
EP  - 380
VL  - 54
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2015_54_3_a3/
LA  - ru
ID  - AL_2015_54_3_a3
ER  - 
%0 Journal Article
%A X. Chen
%A W. Guo
%A A. N. Skiba
%T $\mathfrak F_\tau$-embedded and $\mathfrak F_{\tau,\Phi}$-embedded subgroups of finite groups
%J Algebra i logika
%D 2015
%P 351-380
%V 54
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2015_54_3_a3/
%G ru
%F AL_2015_54_3_a3
X. Chen; W. Guo; A. N. Skiba. $\mathfrak F_\tau$-embedded and $\mathfrak F_{\tau,\Phi}$-embedded subgroups of finite groups. Algebra i logika, Tome 54 (2015) no. 3, pp. 351-380. http://geodesic.mathdoc.fr/item/AL_2015_54_3_a3/