Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2015_54_2_a9, author = {A. N. Khisamiev}, title = {Universal functions over trees}, journal = {Algebra i logika}, pages = {283--291}, publisher = {mathdoc}, volume = {54}, number = {2}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2015_54_2_a9/} }
A. N. Khisamiev. Universal functions over trees. Algebra i logika, Tome 54 (2015) no. 2, pp. 283-291. http://geodesic.mathdoc.fr/item/AL_2015_54_2_a9/
[1] Yu. L. Ershov, Opredelimost i vychislimost, Sibirskaya shkola algebry i logiki, Nauchnaya kniga (NII MIOO NGU), Novosibirsk, 1996 | MR
[2] V. A. Rudnev, “Ob universalnoi rekursivnoi funktsii na dopustimykh mnozhestvakh”, Algebra i logika, 25:4 (1986), 425–435 | MR | Zbl
[3] Yu. L. Ershov, V. G. Puzarenko, A. I. Stukachev, “$\mathbb{HF}$-Computability”, Computability in context, Computation and logic in the real world, eds. S. B. Cooper, A. Sorbi, Imperial College Press, London, 2011, 169–242 | DOI | MR | Zbl
[4] A. N. Khisamiev, “O $\Sigma$-podmnozhestvakh naturalnykh chisel nad abelevymi gruppami”, Sib. matem. zh., 47:3 (2006), 695–706 | MR | Zbl
[5] A. N. Khisamiev, “$\Sigma$-ogranichennye algebraicheskie sistemy i universalnye funktsii. I”, Sib. matem. zh., 51:1 (2010), 217–235 | MR | Zbl
[6] A. N. Khisamiev, “$\Sigma$-ogranichennye algebraicheskie sistemy i universalnye funktsii. II”, Sib. matem. zh., 51:3 (2010), 676–693 | MR | Zbl
[7] A. N. Khisamiev, “$\Sigma$-odnorodnye algebraicheskie sistemy i $\Sigma$-funktsii. I”, Algebra i logika, 50:5 (2011), 659–684 | MR | Zbl
[8] A. N. Khisamiev, “$\Sigma$-odnorodnye algebraicheskie sistemy i $\Sigma$-funktsii. II”, Algebra i logika, 51:1 (2012), 129–147 | MR | Zbl
[9] A. N. Khisamiev, “Ob universalnoi $\Sigma$-funktsii nad derevom”, Sib. matem. zh., 53:3 (2012), 687–690 | MR | Zbl
[10] A. N. Khisamiev, “Universalnye funktsii i pochti $c$-prostye modeli”, Sib. matem. zh., 56:3 (2015), 663–681 | Zbl
[11] A. N. Khisamiev, “Ob odnom klasse pochti $c$-prostykh kolets”, Sib. matem. zh. (to appear)