Recognizable logics
Algebra i logika, Tome 54 (2015) no. 2, pp. 252-274.

Voir la notice de l'article provenant de la source Math-Net.Ru

We look into the recognition problem for extensions of Johansson's minimal logic J. It is proved that certain of the known logics are recognizable over J. Namely, recognizability over J is revealed for all well-composed logics possessing Craig's interpolation property (CIP), the restricted interpolation property (IPR), or the projective Beth property (PBP). It is proved that the logic JF is not reliably recognizable over J. Furthermore, we establish a link between the algebraic and the modified Kripke semantics, and give a criterion for being reliably recognizable in terms of characteristic formulas.
Keywords: Johansson’s minimal logic, recognizability, reliable recognizability, interpolation property, characteristic formula.
@article{AL_2015_54_2_a7,
     author = {L. L. Maksimova and V. F. Yun},
     title = {Recognizable logics},
     journal = {Algebra i logika},
     pages = {252--274},
     publisher = {mathdoc},
     volume = {54},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2015_54_2_a7/}
}
TY  - JOUR
AU  - L. L. Maksimova
AU  - V. F. Yun
TI  - Recognizable logics
JO  - Algebra i logika
PY  - 2015
SP  - 252
EP  - 274
VL  - 54
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2015_54_2_a7/
LA  - ru
ID  - AL_2015_54_2_a7
ER  - 
%0 Journal Article
%A L. L. Maksimova
%A V. F. Yun
%T Recognizable logics
%J Algebra i logika
%D 2015
%P 252-274
%V 54
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2015_54_2_a7/
%G ru
%F AL_2015_54_2_a7
L. L. Maksimova; V. F. Yun. Recognizable logics. Algebra i logika, Tome 54 (2015) no. 2, pp. 252-274. http://geodesic.mathdoc.fr/item/AL_2015_54_2_a7/

[1] A. V. Kuznetsov, “O nerazreshimosti obschikh problem polnoty, razresheniya i ekvivalentnosti dlya ischislenii vyskazyvanii”, Algebra i logika, 2:4 (1963), 47–66 | MR | Zbl

[2] A. V. Chagrov, “Nerazreshimye svoistva superintuitsionistskikh logik”, Matematicheskie voprosy kibernetiki, 5, ed. S. V. Yablonskii, Fizmatlit, M., 1994, 62–108 | MR

[3] I. Johansson, “Der Minimalkalkül, ein reduzierter intuitionistischer Formalismus”, Compos. Math., 4 (1937), 119–136 | MR

[4] L. L. Maksimova, “Klassifikatsiya rasshirenii modalnoi logiki S4”, Sib. matem. zh., 54:6 (2013), 1337–1352 | MR | Zbl

[5] L. L. Maksimova, “Ogranichennaya interpolyatsiya nad modalnoi logikoi S4”, Algebra i logika, 52:4 (2013), 461–501 | MR | Zbl

[6] S. P. Odintsov, Constructive negations and paraconsistency, Trends Log. Stud. Log. Libr., 26, Springer-Verlag, Dordrecht, 2008 | MR | Zbl

[7] S. Miura, “A remark on the intersection of two logics”, Nagoya Math. J., 26 (1966), 167–171 | MR | Zbl

[8] L. L. Maksimova, “Razreshimost slabogo interpolyatsionnogo svoistva nad minimalnoi logikoi”, Algebra i logika, 50:2 (2011), 152–188 | MR | Zbl

[9] A. I. Maltsev, Algebraicheskie sistemy, Nauka, M., 1970 | MR

[10] L. L. Maksimova, “Razreshimost interpolyatsionnogo svoistva Kreiga v stroinykh J-logikakh”, Sib. matem. zh., 53:5 (2012), 1048–1064 | MR | Zbl

[11] L. L. Maksimova, “Teorema Kreiga v superintuitsionistskikh logikakh i amalgamiruemye mnogoobraziya psevdobulevykh algebr”, Algebra i logika, 16:6 (1977), 643–681 | MR | Zbl

[12] L. L. Maksimova, “Razreshimost proektivnogo svoistva Beta v mnogoobraziyakh geitingovykh algebr”, Algebra i logika, 40:3 (2001), 290–301 | MR | Zbl

[13] L. Maksimova, “Problem of restricted interpolation in superintuitionistic and some modal logics”, Log. J. IGPL, 18:3 (2010), 367–380 | DOI | MR | Zbl

[14] L. L. Maksimova, “Proektivnoe svoistvo Beta v stroinykh logikakh”, Algebra i logika, 52:2 (2013), 172–202 | MR | Zbl

[15] D. M. Gabbay, L. Maksimova, Interpolation and definability: modal and intuitionistic logics, Oxford Logic Guides, 46, Oxford Univ. Press, Clarendon Press, Oxford, 2005 | MR | Zbl

[16] A. V. Chagrov, “Nerazreshimye svoistva rasshirenii logiki dokazuemosti. II”, Algebra i logika, 29:5 (1990), 613–623 | MR | Zbl

[17] L. L. Maksimova, “Interpolyatsiya i proektivnoe svoistvo Beta v stroinykh logikakh”, Algebra i logika, 51:2 (2012), 244–275 | MR | Zbl

[18] V. A. Yankov, “O svyazi mezhdu vyvodimostyu v intuitsionistskom ischislenii vyskazyvanii i konechnymi implikativnymi strukturami”, Dokl. AN SSSR, 151:6 (1963), 1293–1294 | Zbl

[19] K. Segerberg, “Propositional logics related to Heyting's and Johansson's”, Theoria, 34 (1968), 26–61 | DOI | MR

[20] L. L. Maksimova, “Metod dokazatelstva interpolyatsii v paraneprotivorechivykh rasshireniyakh minimalnoi logiki”, Algebra i logika, 46:5 (2007), 627–648 | MR | Zbl

[21] L. L. Maksimova, “Predtablichnye superintuitsionistskie logiki”, Algebra i logika, 11:5 (1972), 558–570 | MR | Zbl

[22] M. V. Stukacheva, “O diz'yunktivnom svoistve v klasse paraneprotivorechivykh rasshirenii minimalnoi logiki”, Algebra i logika, 43:2 (2004), 235–252 | MR | Zbl