How to find (compute) a separant
Algebra i logika, Tome 54 (2015) no. 2, pp. 236-242
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $f$ be an arbitrary (unitary) polynomial over a valued field $\mathbb F=\langle F,R\rangle$. In [Algebra i Logika, 53, No. 6, 704–709 (2014)], a separant $\sigma_f$ of such a polynomial was defined to be an element of a value group $\Gamma_{R_0}$ for any algebraically closed extension $\mathbb F_0=\langle F_0,R_0\rangle\ge\mathbb F$. Specifically, the separant was used to obtain a generalization of Hensel's lemma. We show a more algebraic way (compared to the previous) for finding a separant.
Keywords:
valued field, separant, Hensel's lemma.
@article{AL_2015_54_2_a5,
author = {Yu. L. Ershov},
title = {How to find (compute) a~separant},
journal = {Algebra i logika},
pages = {236--242},
publisher = {mathdoc},
volume = {54},
number = {2},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2015_54_2_a5/}
}
Yu. L. Ershov. How to find (compute) a separant. Algebra i logika, Tome 54 (2015) no. 2, pp. 236-242. http://geodesic.mathdoc.fr/item/AL_2015_54_2_a5/