How to find (compute) a separant
Algebra i logika, Tome 54 (2015) no. 2, pp. 236-242

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $f$ be an arbitrary (unitary) polynomial over a valued field $\mathbb F=\langle F,R\rangle$. In [Algebra i Logika, 53, No. 6, 704–709 (2014)], a separant $\sigma_f$ of such a polynomial was defined to be an element of a value group $\Gamma_{R_0}$ for any algebraically closed extension $\mathbb F_0=\langle F_0,R_0\rangle\ge\mathbb F$. Specifically, the separant was used to obtain a generalization of Hensel's lemma. We show a more algebraic way (compared to the previous) for finding a separant.
Keywords: valued field, separant, Hensel's lemma.
@article{AL_2015_54_2_a5,
     author = {Yu. L. Ershov},
     title = {How to find (compute) a~separant},
     journal = {Algebra i logika},
     pages = {236--242},
     publisher = {mathdoc},
     volume = {54},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2015_54_2_a5/}
}
TY  - JOUR
AU  - Yu. L. Ershov
TI  - How to find (compute) a separant
JO  - Algebra i logika
PY  - 2015
SP  - 236
EP  - 242
VL  - 54
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2015_54_2_a5/
LA  - ru
ID  - AL_2015_54_2_a5
ER  - 
%0 Journal Article
%A Yu. L. Ershov
%T How to find (compute) a separant
%J Algebra i logika
%D 2015
%P 236-242
%V 54
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2015_54_2_a5/
%G ru
%F AL_2015_54_2_a5
Yu. L. Ershov. How to find (compute) a separant. Algebra i logika, Tome 54 (2015) no. 2, pp. 236-242. http://geodesic.mathdoc.fr/item/AL_2015_54_2_a5/