Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2015_54_2_a2, author = {S. S. Goncharov and M. I. Marchuk}, title = {Index sets of constructive models of bounded signature that are autostable relative to strong constructivizations}, journal = {Algebra i logika}, pages = {163--192}, publisher = {mathdoc}, volume = {54}, number = {2}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2015_54_2_a2/} }
TY - JOUR AU - S. S. Goncharov AU - M. I. Marchuk TI - Index sets of constructive models of bounded signature that are autostable relative to strong constructivizations JO - Algebra i logika PY - 2015 SP - 163 EP - 192 VL - 54 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AL_2015_54_2_a2/ LA - ru ID - AL_2015_54_2_a2 ER -
%0 Journal Article %A S. S. Goncharov %A M. I. Marchuk %T Index sets of constructive models of bounded signature that are autostable relative to strong constructivizations %J Algebra i logika %D 2015 %P 163-192 %V 54 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/AL_2015_54_2_a2/ %G ru %F AL_2015_54_2_a2
S. S. Goncharov; M. I. Marchuk. Index sets of constructive models of bounded signature that are autostable relative to strong constructivizations. Algebra i logika, Tome 54 (2015) no. 2, pp. 163-192. http://geodesic.mathdoc.fr/item/AL_2015_54_2_a2/
[1] S. S. Goncharov, Dzh. Nait,, “Vychislimye strukturnye i antistrukturnye teoremy”, Algebra i logika, 41:6 (2002), 639–681 | MR | Zbl
[2] A. T. Nurtazin, Vychislimye klassy i algebraicheskie kriterii avtoustoichivosti, Avtoref. dis. kand. fiz.-mat. nauk, Alma-Ata, 1974
[3] S. S. Goncharov, Yu. L. Ershov, Konstruktivnye modeli, Sibirskaya shkola algebry i logiki, Nauchnaya kniga, Novosibirsk, 1999
[4] S. S. Goncharov, “Problema chisla neavtoekvivalentnykh konstruktivizatsii”, Dokl. AN SSSR, 251:2 (1980), 271–274 | MR | Zbl
[5] S. S. Goncharov, “Computability and computable models”, Mathematical problems from applied logic, Logics for the XXIst century, v. II, Int. Math. Ser. (New York), 5, eds. Dov M. Gabbay et al., Springer, New York, NY, 2007, 99–216 | DOI | MR | Zbl
[6] E. B. Fokina, “Indeksnye mnozhestva razreshimykh modelei”, Sib. matem.zh., 48:5 (2007), 1167–1179 | MR | Zbl
[7] E. N. Pavlovskii, “Otsenka algoritmicheskoi slozhnosti klassov vychislimykh modelei”, Sib. matem. zh., 49:3 (2008), 635–649 | MR | Zbl
[8] E. N. Pavlovskii, “Indeksnye mnozhestva prostykh modelei”, Sib. elektron. matem. izv., 5 (2008), 200–210 | MR
[9] Yu. L. Ershov, E. A. Palyutin, Matematicheskaya logika, 6-e izd., Fizmatlit, M., 2011
[10] Kh. Rodzhers, Teoriya rekursivnykh funktsii i effektivnaya vychislimost, Mir, M., 1972 | MR
[11] S. S. Goncharov, A. T. Nurtazin, “Konstruktivnye modeli polnykh razreshimykh teorii”, Algebra i logika, 12:2 (1973), 125–142 | MR | Zbl
[12] A. T. Nurtazin, “Silnye i slabye konstruktivizatsii i vychislimye semeistva”, Algebra i logika, 13:3 (1974), 311–323 | MR | Zbl
[13] S. S. Goncharov, “Indeksnye mnozhestva pochti prostykh konstruktivnykh modelei”, Vestn. NGU. Ser. matem., mekh., inform., 13:3 (2013), 38–52 | Zbl
[14] S. S. Goncharov, B. Khusainov, “Slozhnost teorii vychislimykh kategorichnykh modelei”, Algebra i logika, 43:6 (2004), 650–665 | MR | Zbl
[15] S. S. Goncharov, Schetnye bulevy algebry i razreshimost, Sibirskaya shkola algebry i logiki, Nauchnaya kniga (NII MIOO NGU), Novosibirsk, 1996 | MR
[16] M. G. Peretyatkin, “Silno konstruktivnye modeli i numeratsii bulevoi algebry rekursivnykh mnozhestv”, Algebra i logika, 10:5 (1971), 535–557
[17] D. Marker, “Non $\Sigma_n$ axiomatizable almost strongly minimal theories”, J. Symb. Log., 54:3 (1989), 921–927 | DOI | MR | Zbl
[18] S. S. Goncharov, M. I. Marchuk, “Indeksnye mnozhestva avtoustoichivykh otnositelno silnykh konstruktivizatsii konstruktivnykh modelei”, Vestn. NGU. Ser. matem., mekh., inform., 13:4 (2013), 43–67