Index sets of constructive models of bounded signature that are autostable relative to strong constructivizations
Algebra i logika, Tome 54 (2015) no. 2, pp. 163-192.

Voir la notice de l'article provenant de la source Math-Net.Ru

We evaluate algorithmic complexity of the class of computable models of bounded signature that have a strong constructivization and are autostable relative to strong constructivizations.
Keywords: model, computable model, constructive model, autostability, index sets.
@article{AL_2015_54_2_a2,
     author = {S. S. Goncharov and M. I. Marchuk},
     title = {Index sets of constructive models of bounded signature that are autostable relative to strong constructivizations},
     journal = {Algebra i logika},
     pages = {163--192},
     publisher = {mathdoc},
     volume = {54},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2015_54_2_a2/}
}
TY  - JOUR
AU  - S. S. Goncharov
AU  - M. I. Marchuk
TI  - Index sets of constructive models of bounded signature that are autostable relative to strong constructivizations
JO  - Algebra i logika
PY  - 2015
SP  - 163
EP  - 192
VL  - 54
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2015_54_2_a2/
LA  - ru
ID  - AL_2015_54_2_a2
ER  - 
%0 Journal Article
%A S. S. Goncharov
%A M. I. Marchuk
%T Index sets of constructive models of bounded signature that are autostable relative to strong constructivizations
%J Algebra i logika
%D 2015
%P 163-192
%V 54
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2015_54_2_a2/
%G ru
%F AL_2015_54_2_a2
S. S. Goncharov; M. I. Marchuk. Index sets of constructive models of bounded signature that are autostable relative to strong constructivizations. Algebra i logika, Tome 54 (2015) no. 2, pp. 163-192. http://geodesic.mathdoc.fr/item/AL_2015_54_2_a2/

[1] S. S. Goncharov, Dzh. Nait,, “Vychislimye strukturnye i antistrukturnye teoremy”, Algebra i logika, 41:6 (2002), 639–681 | MR | Zbl

[2] A. T. Nurtazin, Vychislimye klassy i algebraicheskie kriterii avtoustoichivosti, Avtoref. dis. kand. fiz.-mat. nauk, Alma-Ata, 1974

[3] S. S. Goncharov, Yu. L. Ershov, Konstruktivnye modeli, Sibirskaya shkola algebry i logiki, Nauchnaya kniga, Novosibirsk, 1999

[4] S. S. Goncharov, “Problema chisla neavtoekvivalentnykh konstruktivizatsii”, Dokl. AN SSSR, 251:2 (1980), 271–274 | MR | Zbl

[5] S. S. Goncharov, “Computability and computable models”, Mathematical problems from applied logic, Logics for the XXIst century, v. II, Int. Math. Ser. (New York), 5, eds. Dov M. Gabbay et al., Springer, New York, NY, 2007, 99–216 | DOI | MR | Zbl

[6] E. B. Fokina, “Indeksnye mnozhestva razreshimykh modelei”, Sib. matem.zh., 48:5 (2007), 1167–1179 | MR | Zbl

[7] E. N. Pavlovskii, “Otsenka algoritmicheskoi slozhnosti klassov vychislimykh modelei”, Sib. matem. zh., 49:3 (2008), 635–649 | MR | Zbl

[8] E. N. Pavlovskii, “Indeksnye mnozhestva prostykh modelei”, Sib. elektron. matem. izv., 5 (2008), 200–210 | MR

[9] Yu. L. Ershov, E. A. Palyutin, Matematicheskaya logika, 6-e izd., Fizmatlit, M., 2011

[10] Kh. Rodzhers, Teoriya rekursivnykh funktsii i effektivnaya vychislimost, Mir, M., 1972 | MR

[11] S. S. Goncharov, A. T. Nurtazin, “Konstruktivnye modeli polnykh razreshimykh teorii”, Algebra i logika, 12:2 (1973), 125–142 | MR | Zbl

[12] A. T. Nurtazin, “Silnye i slabye konstruktivizatsii i vychislimye semeistva”, Algebra i logika, 13:3 (1974), 311–323 | MR | Zbl

[13] S. S. Goncharov, “Indeksnye mnozhestva pochti prostykh konstruktivnykh modelei”, Vestn. NGU. Ser. matem., mekh., inform., 13:3 (2013), 38–52 | Zbl

[14] S. S. Goncharov, B. Khusainov, “Slozhnost teorii vychislimykh kategorichnykh modelei”, Algebra i logika, 43:6 (2004), 650–665 | MR | Zbl

[15] S. S. Goncharov, Schetnye bulevy algebry i razreshimost, Sibirskaya shkola algebry i logiki, Nauchnaya kniga (NII MIOO NGU), Novosibirsk, 1996 | MR

[16] M. G. Peretyatkin, “Silno konstruktivnye modeli i numeratsii bulevoi algebry rekursivnykh mnozhestv”, Algebra i logika, 10:5 (1971), 535–557

[17] D. Marker, “Non $\Sigma_n$ axiomatizable almost strongly minimal theories”, J. Symb. Log., 54:3 (1989), 921–927 | DOI | MR | Zbl

[18] S. S. Goncharov, M. I. Marchuk, “Indeksnye mnozhestva avtoustoichivykh otnositelno silnykh konstruktivizatsii konstruktivnykh modelei”, Vestn. NGU. Ser. matem., mekh., inform., 13:4 (2013), 43–67