Index sets of constructive models of bounded signature that are autostable relative to strong constructivizations
Algebra i logika, Tome 54 (2015) no. 2, pp. 163-192

Voir la notice de l'article provenant de la source Math-Net.Ru

We evaluate algorithmic complexity of the class of computable models of bounded signature that have a strong constructivization and are autostable relative to strong constructivizations.
Keywords: model, computable model, constructive model, autostability, index sets.
@article{AL_2015_54_2_a2,
     author = {S. S. Goncharov and M. I. Marchuk},
     title = {Index sets of constructive models of bounded signature that are autostable relative to strong constructivizations},
     journal = {Algebra i logika},
     pages = {163--192},
     publisher = {mathdoc},
     volume = {54},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2015_54_2_a2/}
}
TY  - JOUR
AU  - S. S. Goncharov
AU  - M. I. Marchuk
TI  - Index sets of constructive models of bounded signature that are autostable relative to strong constructivizations
JO  - Algebra i logika
PY  - 2015
SP  - 163
EP  - 192
VL  - 54
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2015_54_2_a2/
LA  - ru
ID  - AL_2015_54_2_a2
ER  - 
%0 Journal Article
%A S. S. Goncharov
%A M. I. Marchuk
%T Index sets of constructive models of bounded signature that are autostable relative to strong constructivizations
%J Algebra i logika
%D 2015
%P 163-192
%V 54
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2015_54_2_a2/
%G ru
%F AL_2015_54_2_a2
S. S. Goncharov; M. I. Marchuk. Index sets of constructive models of bounded signature that are autostable relative to strong constructivizations. Algebra i logika, Tome 54 (2015) no. 2, pp. 163-192. http://geodesic.mathdoc.fr/item/AL_2015_54_2_a2/