The structure of groups possessing Carter subgroups of odd order
Algebra i logika, Tome 54 (2015) no. 2, pp. 158-162
Voir la notice de l'article provenant de la source Math-Net.Ru
Let a group $G$ contain a Carter subgroup of odd order. It is shown that every composition factor of $G$ either is Abelian or is isomorphic to $L_2(3^{2n+1})$, $n\ge1$. Moreover, if $3$ does not divide the order of a Carter subgroup, then $G$ solvable.
Mots-clés :
group, solvable group.
Keywords: Carter subgroup of odd order, composition factor of group
Keywords: Carter subgroup of odd order, composition factor of group
@article{AL_2015_54_2_a1,
author = {E. P. Vdovin},
title = {The structure of groups possessing {Carter} subgroups of odd order},
journal = {Algebra i logika},
pages = {158--162},
publisher = {mathdoc},
volume = {54},
number = {2},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2015_54_2_a1/}
}
E. P. Vdovin. The structure of groups possessing Carter subgroups of odd order. Algebra i logika, Tome 54 (2015) no. 2, pp. 158-162. http://geodesic.mathdoc.fr/item/AL_2015_54_2_a1/