The structure of groups possessing Carter subgroups of odd order
Algebra i logika, Tome 54 (2015) no. 2, pp. 158-162.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let a group $G$ contain a Carter subgroup of odd order. It is shown that every composition factor of $G$ either is Abelian or is isomorphic to $L_2(3^{2n+1})$, $n\ge1$. Moreover, if $3$ does not divide the order of a Carter subgroup, then $G$ solvable.
Mots-clés : group, solvable group.
Keywords: Carter subgroup of odd order, composition factor of group
@article{AL_2015_54_2_a1,
     author = {E. P. Vdovin},
     title = {The structure of groups possessing {Carter} subgroups of odd order},
     journal = {Algebra i logika},
     pages = {158--162},
     publisher = {mathdoc},
     volume = {54},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2015_54_2_a1/}
}
TY  - JOUR
AU  - E. P. Vdovin
TI  - The structure of groups possessing Carter subgroups of odd order
JO  - Algebra i logika
PY  - 2015
SP  - 158
EP  - 162
VL  - 54
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2015_54_2_a1/
LA  - ru
ID  - AL_2015_54_2_a1
ER  - 
%0 Journal Article
%A E. P. Vdovin
%T The structure of groups possessing Carter subgroups of odd order
%J Algebra i logika
%D 2015
%P 158-162
%V 54
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2015_54_2_a1/
%G ru
%F AL_2015_54_2_a1
E. P. Vdovin. The structure of groups possessing Carter subgroups of odd order. Algebra i logika, Tome 54 (2015) no. 2, pp. 158-162. http://geodesic.mathdoc.fr/item/AL_2015_54_2_a1/

[1] B. Huppert, N. Blackburn, Finite groups, v. III, Grundlehren Math. Wiss., 243, Springer-Verlag, Berlin a.o., 1982 | MR | Zbl

[2] R. M. Guralnick, G. Malle, G. Navarro, “Self-normalizing Sylow subgroups”, Proc. Am. Math. Soc., 132:4 (2004), 973–979 | DOI | MR | Zbl

[3] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of finite groups, Clarendon Press, Oxford, 1985 | MR | Zbl

[4] V. A. Vedernikov, “Konechnye gruppy s khollovymi $\pi$-podgruppami”, Matem. sb., 203:3 (2012), 23–48 | DOI | MR | Zbl

[5] F. Gross, “On the existence of Hall subgroups”, J. Algebra, 98:1 (1986), 1–13 | DOI | MR | Zbl

[6] E. P. Vdovin, “Gruppy indutsirovannykh avtomorfizmov i ikh primenenie dlya izucheniya problemy suschestvovaniya khollovykh podgrupp”, Algebra i logika, 53:5 (2014), 643–648 | MR | Zbl

[7] E. P. Vdovin, “O probleme sopryazhënnosti karterovykh podgrupp”, Sib. matem. zh., 47:4 (2006), 725–730 | MR | Zbl

[8] E. P. Vdovin, “Karterovy podgruppy konechnykh grupp”, Matem. tr., 11:2 (2008), 20–106 ; Corr., http://math.nsc.ru/~vdovin/Papers/carter_eng_corrigendum.pdf | MR | Zbl