The structure of groups possessing Carter subgroups of odd order
Algebra i logika, Tome 54 (2015) no. 2, pp. 158-162

Voir la notice de l'article provenant de la source Math-Net.Ru

Let a group $G$ contain a Carter subgroup of odd order. It is shown that every composition factor of $G$ either is Abelian or is isomorphic to $L_2(3^{2n+1})$, $n\ge1$. Moreover, if $3$ does not divide the order of a Carter subgroup, then $G$ solvable.
Mots-clés : group, solvable group.
Keywords: Carter subgroup of odd order, composition factor of group
@article{AL_2015_54_2_a1,
     author = {E. P. Vdovin},
     title = {The structure of groups possessing {Carter} subgroups of odd order},
     journal = {Algebra i logika},
     pages = {158--162},
     publisher = {mathdoc},
     volume = {54},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2015_54_2_a1/}
}
TY  - JOUR
AU  - E. P. Vdovin
TI  - The structure of groups possessing Carter subgroups of odd order
JO  - Algebra i logika
PY  - 2015
SP  - 158
EP  - 162
VL  - 54
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2015_54_2_a1/
LA  - ru
ID  - AL_2015_54_2_a1
ER  - 
%0 Journal Article
%A E. P. Vdovin
%T The structure of groups possessing Carter subgroups of odd order
%J Algebra i logika
%D 2015
%P 158-162
%V 54
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2015_54_2_a1/
%G ru
%F AL_2015_54_2_a1
E. P. Vdovin. The structure of groups possessing Carter subgroups of odd order. Algebra i logika, Tome 54 (2015) no. 2, pp. 158-162. http://geodesic.mathdoc.fr/item/AL_2015_54_2_a1/