Derived length of finite $p$-groups factorable by normal elementary Abelian subgroups
Algebra i logika, Tome 54 (2015) no. 1, pp. 92-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AL_2015_54_1_a6,
     author = {V. I. Zenkov},
     title = {Derived length of finite $p$-groups factorable by normal elementary {Abelian} subgroups},
     journal = {Algebra i logika},
     pages = {92--94},
     publisher = {mathdoc},
     volume = {54},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2015_54_1_a6/}
}
TY  - JOUR
AU  - V. I. Zenkov
TI  - Derived length of finite $p$-groups factorable by normal elementary Abelian subgroups
JO  - Algebra i logika
PY  - 2015
SP  - 92
EP  - 94
VL  - 54
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2015_54_1_a6/
LA  - ru
ID  - AL_2015_54_1_a6
ER  - 
%0 Journal Article
%A V. I. Zenkov
%T Derived length of finite $p$-groups factorable by normal elementary Abelian subgroups
%J Algebra i logika
%D 2015
%P 92-94
%V 54
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2015_54_1_a6/
%G ru
%F AL_2015_54_1_a6
V. I. Zenkov. Derived length of finite $p$-groups factorable by normal elementary Abelian subgroups. Algebra i logika, Tome 54 (2015) no. 1, pp. 92-94. http://geodesic.mathdoc.fr/item/AL_2015_54_1_a6/

[1] D. Gorenstein, Konechnye prostye gruppy. Vvedenie v ikh klassifikatsiyu, Mir, M., 1985 | MR

[2] P. Kleidman, M. Liebeck, The subgroup structure of the finite classical groups, London Math. Soc. Lect. Note Series, 129, Cambridge Univ. Press, Cambridge, 1990 | MR | Zbl

[3] J. N. Bray, D. F. Holt, C. M. Roney-Dougal, The maximal subgroups of the lowdimensional finite classical groups, London Math. Soc. Lecture Note Ser., 407, Cambridge Univ. Press, Cambridge, 2013 | MR

[4] R. W. Carter, Simple groups of Lie type, Pure and Appl. Math., 28, J. Wiley Sons, London a. o., 1972 | MR

[5] D. A. Suprunenko, Gruppy matrits, Nauka, M., 1972 | MR