Arithmetic of conjugacy of $p$-complements
Algebra i logika, Tome 54 (2015) no. 1, pp. 53-69.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the question of conjugacy of $p$-complements in all finite groups depending on a prime number $p$.
Mots-clés : $p$-complement
Keywords: conjugacy of subgroups, Nagell–Ljunggren conjecture.
@article{AL_2015_54_1_a3,
     author = {M. N. Nesterov},
     title = {Arithmetic of conjugacy of $p$-complements},
     journal = {Algebra i logika},
     pages = {53--69},
     publisher = {mathdoc},
     volume = {54},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2015_54_1_a3/}
}
TY  - JOUR
AU  - M. N. Nesterov
TI  - Arithmetic of conjugacy of $p$-complements
JO  - Algebra i logika
PY  - 2015
SP  - 53
EP  - 69
VL  - 54
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2015_54_1_a3/
LA  - ru
ID  - AL_2015_54_1_a3
ER  - 
%0 Journal Article
%A M. N. Nesterov
%T Arithmetic of conjugacy of $p$-complements
%J Algebra i logika
%D 2015
%P 53-69
%V 54
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2015_54_1_a3/
%G ru
%F AL_2015_54_1_a3
M. N. Nesterov. Arithmetic of conjugacy of $p$-complements. Algebra i logika, Tome 54 (2015) no. 1, pp. 53-69. http://geodesic.mathdoc.fr/item/AL_2015_54_1_a3/

[1] P. Hall, “A note on soluble groups”, J. Lond. Math. Soc., 3 (1928), 98–105 | DOI | MR | Zbl

[2] P. Hall, “A characteristic property of soluble groups”, J. Lond. Math. Soc., 12 (1937), 198–200 | DOI | MR | Zbl

[3] S. A. Chunikhin, “O razreshimykh gruppakh”, Izv. NIIMM Tom. un-ta, 2 (1938), 220–223 | Zbl

[4] L. S. Kazarin, “O proizvedenii konechnykh grupp”, Doklady AN SSSR, 269:3 (1983), 528–531 | MR | Zbl

[5] R. M. Guralnick, “Subgroups of prime power index in a simple group”, J. Algebra, 81:2 (1983), 304–311 | DOI | MR | Zbl

[6] Z. Arad, E. Fisman, “On finite factorizable groups”, J. Algebra, 86:2 (1984), 522–548 | DOI | MR | Zbl

[7] Z. Arad, M. B. Ward, “New criteria for the solvability of finite groups”, J. Algebra, 77:1 (1982), 234–246 | DOI | MR | Zbl

[8] A. A. Buturlakin, D. O. Revin, “On $p$-complements of finite groups”, Sib. elektron. matem. izv., 10 (2013), 414–417 | MR | Zbl

[9] W. Ljunggren, “Einige Sätze über unbestimmte Gleichungen von der Form $\frac{x^n-1}{x-1}=y^q$”, Norsk Mat. Tidsskr., 25 (1943), 17–20 | MR | Zbl

[10] Y. Bugeaud, M. Mignotte, “L'equation de Nagell–Ljunggren $\frac{x^n-1}{x-1}=y^q$”, Enseign. Math., II Sér., 48:1/2 (2002), 147–168 | MR | Zbl

[11] D. Estes, R. Guralnick, M. Schacher, E. Strau, “Equations in prime powers”, Pac. J. Math., 118:2 (1985), 359–367 | DOI | MR | Zbl

[12] Y. Bugeaud, M. Mignotte, Y. Roy, “On the diophantine equation $\frac{x^n-1}{x-1}=y^q$”, Pac. J. Math., 193:2 (2000), 257–268 | DOI | MR | Zbl

[13] A. Khosravi, B. Khosravi, “On the diophantine equation $\frac{q^n-1}{q-1}=y$”, Commentat. Math. Univ. Carol., 44:1 (2003), 1–7 | MR | Zbl

[14] Z. Polický, “Diophantine equation $\frac{q^n-1}{q-1}=y$ for four prime divisors of $y-1$”, Commentat. Math. Univ. Carol., 46:3 (2005), 577–588 | MR | Zbl

[15] Y. Bugeaud, P. Mihailescu, “On the Nagell–Ljunggren equation $\frac{x^n-1}{x-1}=y^q$”, Math. Scand, 101:2 (2007), 177–183 | MR | Zbl

[16] M. A. Bennett, A. Levin, The Nagell–Ljunggren equation via Runge's method, 2013, arXiv: 1312.4037

[17] M. Aschbacher, Finite group theory, Cambridge Stud. Adv. Math., 10, Cambridge Univ. Press, Cambridge, 1986 | MR | Zbl

[18] P. Kleidman, M. Liebeck, The subgroup structure of the finite classical groups, London Math. Soc. Lect. Note Series, 129, Cambridge Univ. Press, Cambridge, 1990 | MR | Zbl

[19] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of finite groups, Clarendon Press, Oxford, 1985 | MR | Zbl

[20] M. Suzuki, Group Theory, v. II, Grundlehren Mathem. Wiss., 248, Springer-Verlag, New York etc., 1986 | DOI | MR | Zbl

[21] K. Zsigmondy, “Zur Theorie der Potenzreste”, Monatsh. Math. Phys., 3 (1892), 265–284 | DOI | MR | Zbl

[22] B. Huppert, Endliche Gruppen, v. I, Grundlehren mathem. Wiss. Einzeldarstel., 134, Springer-Verlag, Berlin a. o., 1967 | DOI | MR | Zbl