A new constant in superintuitionistic logic~$L3$
Algebra i logika, Tome 54 (2015) no. 1, pp. 34-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that there exist exactly five Novikov complete extensions of the superintuitionistic logic $L3$ in a language with one extra logical constant.
Keywords: superintuitionistic logic $L3$, new logical constant, Novikov complete extensions.
@article{AL_2015_54_1_a2,
     author = {A. K. Koshcheeva},
     title = {A new constant in superintuitionistic logic~$L3$},
     journal = {Algebra i logika},
     pages = {34--52},
     publisher = {mathdoc},
     volume = {54},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2015_54_1_a2/}
}
TY  - JOUR
AU  - A. K. Koshcheeva
TI  - A new constant in superintuitionistic logic~$L3$
JO  - Algebra i logika
PY  - 2015
SP  - 34
EP  - 52
VL  - 54
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2015_54_1_a2/
LA  - ru
ID  - AL_2015_54_1_a2
ER  - 
%0 Journal Article
%A A. K. Koshcheeva
%T A new constant in superintuitionistic logic~$L3$
%J Algebra i logika
%D 2015
%P 34-52
%V 54
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2015_54_1_a2/
%G ru
%F AL_2015_54_1_a2
A. K. Koshcheeva. A new constant in superintuitionistic logic~$L3$. Algebra i logika, Tome 54 (2015) no. 1, pp. 34-52. http://geodesic.mathdoc.fr/item/AL_2015_54_1_a2/

[1] Yu. L. Ershov, E. A. Palyutin, Matematicheskaya logika, Nauka, M., 1979 | MR

[2] D. P. Skvortsov, “Ob intuitsionistskom ischislenii vyskazyvanii s dopolnitelnoi logicheskoi svyazkoi”, Issledovaniya po neklassicheskim logikam i formalnym sistemam, Nauka, M., 1983, 154–173 | MR

[3] Ya. S. Smetanich, “O polnote ischisleniya vyskazyvanii s dopolnitelnoi operatsiei ot odnoi peremennoi”, Tr. Mosk. matem. ob-va, 9, 1960, 357–371 | MR | Zbl

[4] Ya. S. Smetanich, “Ob ischisleniyakh vyskazyvanii s dopolnitelnoi operatsiei”, Dokl. AN SSSR, 139:2 (1961), 309–312 | Zbl

[5] A. D. Yashin, “O novoi konstante v intuitsionistskoi logike vyskazyvanii”, Fund. prikl. matem., 5:3 (1999), 903–926 | MR | Zbl

[6] A. D. Yashin, “New intuitionistic logical constants and Novikov completeness”, Stud. Log., 63:2 (1999), 151–180 | DOI | MR | Zbl

[7] A. D. Yashin, “Klassifikatsiya polnykh po Novikovu logik s dopolnitelnymi logicheskimi konstantami”, Algebra i logika, 42:3 (2003), 366–383 | MR | Zbl

[8] A. D. Yashin, “Novaya regulyarnaya konstanta v intuitsionistskoi logike vyskazyvanii”, Sib. matem. zh., 37:6 (1996), 1413–1432 | MR | Zbl

[9] V. A. Yankov, “Postroenie posledovatelnosti silno nezavisimykh superintuitsionistskikh propozitsionalnykh ischislenii”, Dokl. AN SSSR, 181:1 (1968), 33–34 | Zbl

[10] L. L. Maksimova, “Predtablichnye superintuitsionistskie logiki”, Algebra i logika, 11:5 (1972), 558–570 | MR | Zbl

[11] A. D. Yashin, “O novykh konstantakh v dvukh predtablichnykh superintuitsionistskikh logikakh”, Algebra i logika, 50:2 (2011), 246–267 | MR | Zbl

[12] Kh. Raseva, R. Sikorskii, Matematika metamatematiki, Nauka, M., 1972 | MR

[13] H. Ono, “Kripke models and intermediate logics”, Publs. Res. Inst. Math. Sci. Kyoto Univ., 6:71 (1970), 461–476 | DOI | MR

[14] M. C. Fitting, Intuitionistic logic, model theory and forcing, Stud. Logic Found. Math., North-Holland Publ. Co., Amsterdam–London, 1969 | MR | Zbl

[15] L. L. Esakia, Algebry Geitinga, Metsniereba, Tbilisi, 1985 | MR

[16] D. P. Dubashi, “On decidable varieties of Heyting algebras”, J. Symb. Log., 57:3 (1992), 988–991 | DOI | MR

[17] A. Chagrov, M. Zakharyaschev, Modal logics, Oxford Logic Guides, 35, Clarendon Press, Oxford, 1997 | MR

[18] M. Zakharyaschev, F. Wolter, A. Chagrov, “Advanced modal logic”, Handbook of philosohicl logic, v. 3, eds. D. M. Gabbay et al., Kluwer Acad. Publ., Dordrecht, 2001, 83–266 | MR | Zbl

[19] M. V. Zakharyaschev, “Sintaksis i semantika superintuitsionistskikh logik”, Algebra i logika, 28:4 (1989), 402–429 | MR

[20] R. I. Goldblatt, “Metamathematics of modal logic. I”, Rep. Math. Logic, 6 (1976), 41–77 | MR | Zbl

[21] R. I. Goldblatt, “Metamathematics of modal logic. II”, Rep. Math. Logic, 7 (1976), 21–52, (1977) | MR

[22] N. Bezhanishvili, D. de Jongh, Intuitionistic logic, http://www.illc.uva.nl/Publications/ResearchReports/PP-2006-25.text.pdf

[23] R. Sh. Grigoliya, “Svobodnye S4.3-algebry s konechnym chislom obrazuyuschikh”, Issledovaniya po neklassicheskim logikam i formalnym sistemam, Nauka, M., 1983, 281–287 | MR