Generic theories for series of finite Abelian groups
Algebra i logika, Tome 53 (2014) no. 6, pp. 722-734.

Voir la notice de l'article provenant de la source Math-Net.Ru

The notion of a generic theory $\mathsf{GTh}(\mathcal K,\mu)$ with respect to a measure $\mu$ was introduced in [Algebra i Logika, 53, No. 6, 779–789 (2014)]. Here, based on elementary invariants for Abelian groups and using a measure generated by a Frechet filter, we describe generic theories for two series of cyclic groups. Axioms of generic theories are given, complete theories are characterized in terms of elementary invariants, and canonical models of complete theories are constructed.
Keywords: generic theory with respect to measure, Frechet filter, finite Abelian group.
@article{AL_2014_53_6_a4,
     author = {A. A. Mishchenko and V. N. Remeslennikov and A. V. Treier},
     title = {Generic theories for series of finite {Abelian} groups},
     journal = {Algebra i logika},
     pages = {722--734},
     publisher = {mathdoc},
     volume = {53},
     number = {6},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2014_53_6_a4/}
}
TY  - JOUR
AU  - A. A. Mishchenko
AU  - V. N. Remeslennikov
AU  - A. V. Treier
TI  - Generic theories for series of finite Abelian groups
JO  - Algebra i logika
PY  - 2014
SP  - 722
EP  - 734
VL  - 53
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2014_53_6_a4/
LA  - ru
ID  - AL_2014_53_6_a4
ER  - 
%0 Journal Article
%A A. A. Mishchenko
%A V. N. Remeslennikov
%A A. V. Treier
%T Generic theories for series of finite Abelian groups
%J Algebra i logika
%D 2014
%P 722-734
%V 53
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2014_53_6_a4/
%G ru
%F AL_2014_53_6_a4
A. A. Mishchenko; V. N. Remeslennikov; A. V. Treier. Generic theories for series of finite Abelian groups. Algebra i logika, Tome 53 (2014) no. 6, pp. 722-734. http://geodesic.mathdoc.fr/item/AL_2014_53_6_a4/

[1] A. G. Myasnikov, V. N. Remeslennikov, “Genericheskaya teoriya kak metod approksimatsii elementarnykh teorii”, Algebra i logika, 53:6 (2014), 779–789

[2] Yu. L. Ershov, Problemy razreshimosti i konstruktivnye modeli, Nauka, M., 1980 | MR

[3] W. Szmielew, “Elementary properties of abelian groups”, Fundam. Math., 41 (1955), 203–271 | MR | Zbl

[4] L. Fuks, Beskonechnye abelevy gruppy, v. 1, Mir, M., 1974