$\{2,3\}$-groups with no elements of order~6
Algebra i logika, Tome 53 (2014) no. 6, pp. 710-721.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe $\{2,3\}$-groups without elements of order 6 in which orders of $2$-elements are bounded in totality and the order of a product of any two elements of orders at most 4 does not exceed 9.
Mots-clés : $\{2,3\}$-group
Keywords: locally finite group.
@article{AL_2014_53_6_a3,
     author = {D. V. Lytkina and V. D. Mazurov},
     title = {$\{2,3\}$-groups with no elements of order~6},
     journal = {Algebra i logika},
     pages = {710--721},
     publisher = {mathdoc},
     volume = {53},
     number = {6},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2014_53_6_a3/}
}
TY  - JOUR
AU  - D. V. Lytkina
AU  - V. D. Mazurov
TI  - $\{2,3\}$-groups with no elements of order~6
JO  - Algebra i logika
PY  - 2014
SP  - 710
EP  - 721
VL  - 53
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2014_53_6_a3/
LA  - ru
ID  - AL_2014_53_6_a3
ER  - 
%0 Journal Article
%A D. V. Lytkina
%A V. D. Mazurov
%T $\{2,3\}$-groups with no elements of order~6
%J Algebra i logika
%D 2014
%P 710-721
%V 53
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2014_53_6_a3/
%G ru
%F AL_2014_53_6_a3
D. V. Lytkina; V. D. Mazurov. $\{2,3\}$-groups with no elements of order~6. Algebra i logika, Tome 53 (2014) no. 6, pp. 710-721. http://geodesic.mathdoc.fr/item/AL_2014_53_6_a3/

[1] I. N. Sanov, “Reshenie problemy Bernsaida dlya pokazatelya 4”, Uchen. zap. Leningr. gos. un-ta. Ser. matem., 10, 1940, 166–170 | MR | Zbl

[2] B. H. Neumann, “Groups whose elements have bounded orders”, J. Lond. Math. Soc., 12 (1937), 195–198 | DOI | MR | Zbl

[3] D. V. Lytkina, “Stroenie gruppy, poryadki elementov kotoroi ne prevoskhodyat chisla 4”, Sib. matem. zh., 48:2 (2007), 353–358 | MR | Zbl

[4] V. D. Mazurov, “O gruppakh perioda 24”, Algebra i logika, 49:6 (2010), 766–781 | MR

[5] E. Dzhabara, D. V. Lytkina, “O gruppakh perioda 36”, Sib. matem. zh., 54:1 (2013), 44–48 | MR

[6] E. Jabara, D. V. Lytkina, V. D. Mazurov, “On groups of exponent 72”, J. Group Theory (to appear)

[7] A. Kh. Zhurtov, D. V. Lytkina, V. D. Mazurov, A. I. Sozutov, “O periodicheskikh gruppakh, svobodno deistvuyuschikh na abelevykh gruppakh”, Tr. IMM UrO RAN, 19, no. 3, 2013, 136–143

[8] V. P. Shunkov, “O periodicheskikh gruppakh s pochti regulyarnoi involyutsiei”, Algebra i logika, 11:4 (1972), 470–493

[9] A. Kh. Zhurtov, “O regulyarnykh avtomorfizmakh poryadka 3 i parakh Frobeniusa”, Sib. matem. zh., 41:2 (2000), 329–338 | MR | Zbl

[10] B. H. Neumann, “Groups with automorphisms that leave only the neutral element fixed”, Arch. Math., 7:1 (1956), 1–5 | DOI | MR | Zbl

[11] A. Kh. Zhurtov, “O kvadratichnykh avtomorfizmakh abelevykh grupp”, Algebra i logika, 39:3 (2000), 320–328 | MR | Zbl

[12] D. V. Lytkina, “O periodicheskikh gruppakh, deistvuyuschikh svobodno na abelevoi gruppe”, Algebra i logika, 49:3 (2010), 379–387 | MR | Zbl

[13] GAP – Groups, Algorithms, Programming – a System for Computational Discrete Algebra, vers. 4.7.5, , The GAP Group, 2014 http://www.gap-system.org

[14] V. D. Mazurov, “O beskonechnykh gruppakh s abelevymi tsentralizatorami involyutsii”, Algebra i logika, 39:1 (2000), 74–86 | MR | Zbl

[15] M. Kholl, Teoriya grupp, IL, M., 1962