Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2014_53_6_a2, author = {Yu. L. Ershov}, title = {Separant of an arbitrary polynomial}, journal = {Algebra i logika}, pages = {704--709}, publisher = {mathdoc}, volume = {53}, number = {6}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2014_53_6_a2/} }
Yu. L. Ershov. Separant of an arbitrary polynomial. Algebra i logika, Tome 53 (2014) no. 6, pp. 704-709. http://geodesic.mathdoc.fr/item/AL_2014_53_6_a2/
[1] Yu. L. Ershov, Kratno normirovannye polya, Sib. shkola algebry i logiki, Nauch. kniga, Novosibirsk, 2000
[2] D. Brink, “New light on Hensel's lemma”, Expo. Math., 24:4 (2006), 291–306 | DOI | MR | Zbl
[3] Yu. L. Ershov, “Rasshireniya Lyubina–Teita (elementarnyi podkhod)”, Izv. RAN. Ser. matem., 71:6 (2007), 3–28 | DOI | MR | Zbl
[4] Yu. L. Ershov, “Teoremy o nepreryvnosti kornei mnogochlenov v normirovannykh polyakh”, Sib. matem. zh., 47:6 (2006), 1258–1264 | MR | Zbl
[5] Yu. L. Ershov, “Teoremy o nepreryvnosti kornei mnogochlenov v normirovannykh polyakh. II”, Sib. matem. zh., 49:5 (2008), 1077–1082 | MR | Zbl
[6] Yu. L. Ershov, “Obobscheniya lemmy Genzelya i metod blizhaishego kornya”, Algebra i logika, 50:6 (2011), 701–706 | MR | Zbl
[7] A. J. Engler, A. Prestel, Valued fields, Springer Monogr. Math., Springer-Verlag, Berlin, 2005 | MR | Zbl