Separant of an arbitrary polynomial
Algebra i logika, Tome 53 (2014) no. 6, pp. 704-709.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $f$ be a unitary polynomial over $F$. Previously, the concept of a separant of a polynomial $f$ was defined for the case where f has no multiple roots. The notion of a separant turned out to be very useful for generalizations of Hensel's lemma. We propose a generalization of this concept to the case where a polynomial may have multiple roots. This allows us to extend Hensel's lemma to this case as well.
Keywords: separant of polynomial, Hensel's lemma.
@article{AL_2014_53_6_a2,
     author = {Yu. L. Ershov},
     title = {Separant of an arbitrary polynomial},
     journal = {Algebra i logika},
     pages = {704--709},
     publisher = {mathdoc},
     volume = {53},
     number = {6},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2014_53_6_a2/}
}
TY  - JOUR
AU  - Yu. L. Ershov
TI  - Separant of an arbitrary polynomial
JO  - Algebra i logika
PY  - 2014
SP  - 704
EP  - 709
VL  - 53
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2014_53_6_a2/
LA  - ru
ID  - AL_2014_53_6_a2
ER  - 
%0 Journal Article
%A Yu. L. Ershov
%T Separant of an arbitrary polynomial
%J Algebra i logika
%D 2014
%P 704-709
%V 53
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2014_53_6_a2/
%G ru
%F AL_2014_53_6_a2
Yu. L. Ershov. Separant of an arbitrary polynomial. Algebra i logika, Tome 53 (2014) no. 6, pp. 704-709. http://geodesic.mathdoc.fr/item/AL_2014_53_6_a2/

[1] Yu. L. Ershov, Kratno normirovannye polya, Sib. shkola algebry i logiki, Nauch. kniga, Novosibirsk, 2000

[2] D. Brink, “New light on Hensel's lemma”, Expo. Math., 24:4 (2006), 291–306 | DOI | MR | Zbl

[3] Yu. L. Ershov, “Rasshireniya Lyubina–Teita (elementarnyi podkhod)”, Izv. RAN. Ser. matem., 71:6 (2007), 3–28 | DOI | MR | Zbl

[4] Yu. L. Ershov, “Teoremy o nepreryvnosti kornei mnogochlenov v normirovannykh polyakh”, Sib. matem. zh., 47:6 (2006), 1258–1264 | MR | Zbl

[5] Yu. L. Ershov, “Teoremy o nepreryvnosti kornei mnogochlenov v normirovannykh polyakh. II”, Sib. matem. zh., 49:5 (2008), 1077–1082 | MR | Zbl

[6] Yu. L. Ershov, “Obobscheniya lemmy Genzelya i metod blizhaishego kornya”, Algebra i logika, 50:6 (2011), 701–706 | MR | Zbl

[7] A. J. Engler, A. Prestel, Valued fields, Springer Monogr. Math., Springer-Verlag, Berlin, 2005 | MR | Zbl