Separant of an arbitrary polynomial
Algebra i logika, Tome 53 (2014) no. 6, pp. 704-709
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $f$ be a unitary polynomial over $F$. Previously, the concept of a separant of a polynomial $f$ was defined for the case where f has no multiple roots. The notion of a separant turned out to be very useful for generalizations of Hensel's lemma. We propose a generalization of this concept to the case where a polynomial may have multiple roots. This allows us to extend Hensel's lemma to this case as well.
Keywords:
separant of polynomial, Hensel's lemma.
@article{AL_2014_53_6_a2,
author = {Yu. L. Ershov},
title = {Separant of an arbitrary polynomial},
journal = {Algebra i logika},
pages = {704--709},
publisher = {mathdoc},
volume = {53},
number = {6},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2014_53_6_a2/}
}
Yu. L. Ershov. Separant of an arbitrary polynomial. Algebra i logika, Tome 53 (2014) no. 6, pp. 704-709. http://geodesic.mathdoc.fr/item/AL_2014_53_6_a2/