Commutator width of elements in a~free metabelian Lie algebra
Algebra i logika, Tome 53 (2014) no. 5, pp. 587-613.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $M(A)$ be a free metabelian Lie algebra with a finite generating set $A$ over an algebraically closed field $F$ of characteristic zero, in which the problem of there being solutions to a system of linear equations is decided algorithmically, and let $M'(A)$ be the derived subalgebra of $M(A)$. We present an algorithm for finding width of elements in $M'(A)$.
Keywords: free metabelian Lie algebra, width of element in derived algebra, solvability.
Mots-clés : equation
@article{AL_2014_53_5_a2,
     author = {E. N. Poroshenko},
     title = {Commutator width of elements in a~free metabelian {Lie} algebra},
     journal = {Algebra i logika},
     pages = {587--613},
     publisher = {mathdoc},
     volume = {53},
     number = {5},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2014_53_5_a2/}
}
TY  - JOUR
AU  - E. N. Poroshenko
TI  - Commutator width of elements in a~free metabelian Lie algebra
JO  - Algebra i logika
PY  - 2014
SP  - 587
EP  - 613
VL  - 53
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2014_53_5_a2/
LA  - ru
ID  - AL_2014_53_5_a2
ER  - 
%0 Journal Article
%A E. N. Poroshenko
%T Commutator width of elements in a~free metabelian Lie algebra
%J Algebra i logika
%D 2014
%P 587-613
%V 53
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2014_53_5_a2/
%G ru
%F AL_2014_53_5_a2
E. N. Poroshenko. Commutator width of elements in a~free metabelian Lie algebra. Algebra i logika, Tome 53 (2014) no. 5, pp. 587-613. http://geodesic.mathdoc.fr/item/AL_2014_53_5_a2/

[1] L. A. Bokut, “Baza svobodnykh polinilpotentnykh algebr Li”, Algebra i logika, 2:4 (1963), 13–20 | MR

[2] A. L. Shmelkin, “Svobodnye polinilpotentnye gruppy”, Izv. AN SSSR. Cer. matem., 28:1 (1964), 91–122 | MR | Zbl

[3] Yu. I. Merzlyakov, Ratsionalnye gruppy, 2-e izd., Nauka, M., 1987 | MR

[4] V. A. Artamonov, “Proektivnye metabelevy gruppy i algebry Li”, Izv. AN SSSR. Ser. matem., 42:2 (1978), 226–236 | MR | Zbl

[5] V. A. Artamonov, “The categories of free metabelian groups and Lie algebras”, Commentat. Math. Univ. Carol., 18:1 (1977), 142–159 | MR

[6] V. Roman'kov, “Equations over groups”, Groups Complex. Cryptol., 4:2 (2012), 191–239 | MR | Zbl

[7] E. N. Poroshenko, E. I. Timoshenko, “Universal equivalence of partially commutative metabelian Lie algebras”, J. Algebra, 384 (2013), 143–168 | DOI | MR | Zbl

[8] B. L. Van der Varden, Algebra, Lan, SPb., 2004