Ternary derivations of Jordan superalgebras
Algebra i logika, Tome 53 (2014) no. 4, pp. 505-540.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a description of ternary and generalized derivations of finitedimensional semisimple Jordan superalgebras over an algebraically closed field of characteristic 0, and also of simple Jordan superalgebras with semisimple even part over an algebraically closed field in arbitrary characteristic other than 2.
Keywords: superalgebra, Jordan algebra, generalized derivation, ternary derivation.
@article{AL_2014_53_4_a3,
     author = {A. I. Shestakov},
     title = {Ternary derivations of {Jordan} superalgebras},
     journal = {Algebra i logika},
     pages = {505--540},
     publisher = {mathdoc},
     volume = {53},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2014_53_4_a3/}
}
TY  - JOUR
AU  - A. I. Shestakov
TI  - Ternary derivations of Jordan superalgebras
JO  - Algebra i logika
PY  - 2014
SP  - 505
EP  - 540
VL  - 53
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2014_53_4_a3/
LA  - ru
ID  - AL_2014_53_4_a3
ER  - 
%0 Journal Article
%A A. I. Shestakov
%T Ternary derivations of Jordan superalgebras
%J Algebra i logika
%D 2014
%P 505-540
%V 53
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2014_53_4_a3/
%G ru
%F AL_2014_53_4_a3
A. I. Shestakov. Ternary derivations of Jordan superalgebras. Algebra i logika, Tome 53 (2014) no. 4, pp. 505-540. http://geodesic.mathdoc.fr/item/AL_2014_53_4_a3/

[1] R. D. Schafer, An introduction to nonassociative algebras, Pure Appl. Math., 22, Academic Press, New York–London, 1966 | MR | Zbl

[2] S. Jiménez-Gestal, J. M. Pérez-Izquierdo, “Ternary derivations of generalized Cayley–Dickson algebras”, Commun. Algebra, 31:10 (2003), 5071–5094 | DOI | MR | Zbl

[3] S. Jiménez-Gestal, J. M. Pérez-Izquierdo, “Ternary derivations of finite-dimensional real division algebras Linear”, Algebra Appl., 428:8/9 (2008), 2192–2219 | DOI | MR | Zbl

[4] J. M. Pérez-Izquierdo, “Unital algebras, ternary derivations, and local triality”, Algebras, representations and applications, Conference in honour of Ivan Shestakov's 60th birthday, Maresias, Brazil, August 26 – September 1, 2007, 483, eds. V. Futorny et al., Am. Math. Soc., Providence, RI, 2009, 205–220 | MR | Zbl

[5] V. T. Filippov, “O $\delta$-differentsirovaniyakh algebr Li”, Sib. matem. zh., 39:6 (1998), 1409–1422 | MR | Zbl

[6] V. T. Filippov, “O $\delta$-differentsirovaniyakh pervichnykh algebr Li”, Sib. matem. zh., 40:1 (1999), 201–213 | MR | Zbl

[7] V. T. Filippov, “O $\delta$-differentsirovaniyakh pervichnykh alternativnykh i maltsevskikh algebr”, Algebra i logika, 39:5 (2000), 618–625 | MR | Zbl

[8] P. Zusmanovich, “On $\delta$-derivations of Lie algebras and superalgebras”, J. Algebra, 324:12 (2010), 3470–3486 | DOI | MR | Zbl

[9] I. B. Kaigorodov, “O $\delta$-differentsirovaniyakh prostykh konechnomernykh iordanovykh superalgebr”, Algebra i logika, 46:5 (2007), 585–605 | MR | Zbl

[10] I. B. Kaigorodov, “O $\delta$-differentsirovaniyakh klassicheskikh superalgebr Li”, Sib. matem. zh., 50:3 (2009), 547–565 | MR | Zbl

[11] I. B. Kaigorodov, “O $\delta$-superdifferentsirovaniyakh prostykh konechnomernykh iordanovykh i lievykh superalgebr”, Algebra i logika, 49:2 (2010), 195–215 | MR | Zbl

[12] V. N. Zhelyabin, I. B. Kaigorodov, “O $\delta$-superdifferentsirovaniyakh prostykh superalgebr iordanovoi skobki”, Algebra i analiz, 23:4 (2011), 40–58 | MR | Zbl

[13] I. B. Kaigorodov, “O $\delta$-superdifferentsirovaniyakh poluprostykh konechnomernykh iordanovykh superalgebr”, Matem. zametki, 91:2 (2012), 200–213 | DOI | Zbl

[14] G. F. Leger, E. M. Luks, “Generalized derivations of Lie algebras”, J. Algebra, 228:1 (2000), 165–203 | DOI | MR | Zbl

[15] M. Brešar, “On the distance of the composition of two derivations to the generalized derivations”, Glasg. Math. J., 33:1 (1991), 89–93 | DOI | MR | Zbl

[16] H. Komatsu, A. Nakajima, “Generalized derivations of associative algebras”, Quaest. Math., 26:2 (2003), 213–235 | DOI | MR | Zbl

[17] H. Komatsu, A. Nakajima, “Generalized derivations with invertible values”, Commun. Algebra, 32:5 (2004), 1937–1944 | DOI | MR | Zbl

[18] R. Zhang, Y. Zhang, “Generalized derivations of Lie superalgebras”, Commun. Algebra, 38:10 (2010), 3737–3751 | DOI | MR | Zbl

[19] A. I. Shestakov, “Ternarnye differentsirovaniya separabelnykh assotsiativnykh i iordanovykh algebr”, Sib. matem. zh., 53:5 (2012), 1178–1195 | MR | Zbl

[20] I. P. Shestakov, “Alternativnye i iordanovy superalgebry”, Algebra, geometriya, analiz i matematicheskaya fizika, X Sibirskaya shkola (Novosibirsk, 14–22 avgusta 1996), In-t matematiki, Novosibirsk, 1997, 157–169 | MR | Zbl

[21] I. L. Kantor, “Iordanovy i lievy superalgebry, opredelennye algebroi Puassona”, Algebra i analiz, izd-vo TGU, Tomsk, 1989, 55–80 | MR

[22] V. G. Kac, “Slassification of simple $z$-graded Lie superalgebras and simple Jordan superalgebras”, Commun. Algebra, 5 (1977), 1375–1400 | DOI | MR | Zbl

[23] M. L. Racine, E. I. Zelmanov, “Simple Jordan superalgebras with semisimple even part”, J. Algebra, 270:2 (2003), 374–444 | DOI | MR | Zbl

[24] N. Jacobson, Structure and representations of Jordan algebras, Colloq. Publ., 39, Am. Math. Soc., Providence, RI, 1968 | MR | Zbl

[25] K. McCrimmon, Ng Seong Nam, “Middle nucleus$=$center in semiprime Jordan algebras”, Proc. Am. Math. Soc., 86:1 (1982), 21–24 | MR | Zbl

[26] E. Zelmanov, “Semisimple finite dimensional Jordan superalgebras”, Lie algebras, rings and related topics, Papers of the 2nd Tainan–Moscow international algebra workshop' 97 (Tainan, Taiwan, January 11–17, 1997), eds. Yuen Fong et al., Springer, Hong Kong, 2000, 227–243 | Zbl