$\Sigma^0_2$-initial segments of computable linear orders
Algebra i logika, Tome 53 (2014) no. 3, pp. 413-415.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AL_2014_53_3_a6,
     author = {R. I. Bikmukhametov},
     title = {$\Sigma^0_2$-initial segments of computable linear orders},
     journal = {Algebra i logika},
     pages = {413--415},
     publisher = {mathdoc},
     volume = {53},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2014_53_3_a6/}
}
TY  - JOUR
AU  - R. I. Bikmukhametov
TI  - $\Sigma^0_2$-initial segments of computable linear orders
JO  - Algebra i logika
PY  - 2014
SP  - 413
EP  - 415
VL  - 53
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2014_53_3_a6/
LA  - ru
ID  - AL_2014_53_3_a6
ER  - 
%0 Journal Article
%A R. I. Bikmukhametov
%T $\Sigma^0_2$-initial segments of computable linear orders
%J Algebra i logika
%D 2014
%P 413-415
%V 53
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2014_53_3_a6/
%G ru
%F AL_2014_53_3_a6
R. I. Bikmukhametov. $\Sigma^0_2$-initial segments of computable linear orders. Algebra i logika, Tome 53 (2014) no. 3, pp. 413-415. http://geodesic.mathdoc.fr/item/AL_2014_53_3_a6/

[1] R. I. Soare, Recursively enumerable sets and degrees, Perspect. Math. Log., Omega Series, Springer-Verlag, Heidelberg a.o., 1987 ; R. I. Soar, Vychislimo perechislimye mnozhestva i stepeni, Kazanskoe matem. ob-vo, Kazan, 2000 | DOI | MR | MR | Zbl

[2] M. J. S. Raw, Complexity of automorphisms of recursive linear orders, Ph. D. Thesis, Univ. Wisconsin-Madison, 1995 | MR

[3] R. J. Coles, R. Downey, B. Khoussainov, “On initial segments of computable linear orders”, Order, 14:2 (1998), 107–124 | DOI | MR | Zbl

[4] M. V. Zubkov, “O nachalnykh segmentakh vychislimykh lineinykh poryadkov s dopolnitelnymi vychislimymi predikatami”, Algebra i logika, 48:5 (2009), 564–579 | MR | Zbl

[5] K. Ambos-Spies, S. B. Cooper, S. Lempp, “Initial segments of recursive linear orders”, Order, 14:2 (1998), 101–105 | DOI | MR | Zbl