$\Sigma$-presentations of the ordering on the reals
Algebra i logika, Tome 53 (2014) no. 3, pp. 340-371.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the nonexistence of universal $\Sigma$-presentable linear orderings as well as the effective infinity of the class of $\Sigma$-presentations of the natural order on $\mathbb R$ over an admissible set $\mathbb{HF(R)}$.
Keywords: $\Sigma$-presentation, ordering on reals
Mots-clés : admissible set.
@article{AL_2014_53_3_a3,
     author = {A. S. Morozov},
     title = {$\Sigma$-presentations of the ordering on the reals},
     journal = {Algebra i logika},
     pages = {340--371},
     publisher = {mathdoc},
     volume = {53},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2014_53_3_a3/}
}
TY  - JOUR
AU  - A. S. Morozov
TI  - $\Sigma$-presentations of the ordering on the reals
JO  - Algebra i logika
PY  - 2014
SP  - 340
EP  - 371
VL  - 53
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2014_53_3_a3/
LA  - ru
ID  - AL_2014_53_3_a3
ER  - 
%0 Journal Article
%A A. S. Morozov
%T $\Sigma$-presentations of the ordering on the reals
%J Algebra i logika
%D 2014
%P 340-371
%V 53
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2014_53_3_a3/
%G ru
%F AL_2014_53_3_a3
A. S. Morozov. $\Sigma$-presentations of the ordering on the reals. Algebra i logika, Tome 53 (2014) no. 3, pp. 340-371. http://geodesic.mathdoc.fr/item/AL_2014_53_3_a3/

[1] A. I. Maltsev, “O rekursivnykh abelevykh gruppakh”, Dokl. AN SSSR, 146:5 (1962), 1009–1012 | Zbl

[2] S. S. Goncharov, “Problema chisla neavtoekvivalentnykh konstruktivizatsii”, Dokl. AN SSSR, 251:2 (1980), 271–274 | MR | Zbl

[3] S. S. Goncharov, “Problema chisla neavtoekvivalentnykh konstruktivizatsii”, Algebra i logika, 19:6 (1980), 621–639 | MR

[4] D. R. Hirschfeldt, B. Khoussainov, R. A. Shore, A. M. Slinko, “Degree spectra and computable dimensions in algebraic structures”, Ann. Pure Appl. Logic, 115:1–3 (2002), 71–113 | DOI | MR | Zbl

[5] Yu. L. Ershov, “$\Sigma$-definability of algebraic structures”, Handbook of recursive mathematics, v. 1, Stud. Logic Found. Math., 138, Recursive model theory, eds. Y. L. Ershov, S. S. Goncharov, A. Nerode, J. B. Remmel, Elsevier Science B.V., Amsterdam, 1998, 235–260 | DOI | MR | Zbl

[6] A. S. Morozov, M. V. Korovina, “O $\Sigma$-opredelimosti schëtnykh struktur nad veschestvennymi, kompleksnymi chislami i kvaternionami”, Algebra i logika, 47:3 (2008), 335–363 | MR | Zbl

[7] A. V. Romina, “Avtoustoichivost giperarifmeticheskikh modelei”, Algebra i logika, 39:2 (2000), 198–205 | MR | Zbl

[8] J. Barwise, Admissible sets and structures, An approach to definability theory, Perspec. Math. Logic, Springer-Velag, Berlin, 1975 | DOI | MR | Zbl

[9] Yu. L. Ershov, Opredelimost i vychislimost, Sibirskaya shkola algebry i logiki, Nauchnaya kniga (NII MIOO NGU), Novosibirsk, 1996 | MR | Zbl

[10] A. Tarski, A decision method for elementary algebra and geometry, 2nd ed., Univ. Calif. Press, Berkeley, 1951 | MR | Zbl

[11] D. Marker, Model theory: An introduction, Grad. Texts Math., 217, Springer-Verlag, New York etc., 2002 | MR | Zbl

[12] Yu. L. Ershov, V. G. Puzarenko, A. I. Stukachev, “$\mathbb{HF}$-Computability”, Computability in context. Computation and logic in the real world, eds. S. B. Cooper, A. Sorbi, World Scientific, London, 2011, 173–248 | MR

[13] A. S. Morozov, “O nekotorykh predstavleniyakh polya veschestvennykh chisel”, Algebra i logika, 51:1 (2012), 96–128 | MR | Zbl