Solvable and unipotent supergroups
Algebra i logika, Tome 53 (2014) no. 3, pp. 323-339.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that an algebraic supergroup $G$ is unipotent iff $G_{ev}$ is unipotent. Here our reasoning involves only induction on dimension and some properties of the adjoint representation. In a similar way, it is shown that over a field of characteristic zero, a connected supergroup $G$ is solvable iff $G_{ev}$ is solvable.
Keywords: adjoint representation, algebraic supergroup, unipotent supergroup, connected supergroup.
Mots-clés : solvable supergroup
@article{AL_2014_53_3_a2,
     author = {A. N. Zubkov and P. A. Ulyashev},
     title = {Solvable and unipotent supergroups},
     journal = {Algebra i logika},
     pages = {323--339},
     publisher = {mathdoc},
     volume = {53},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2014_53_3_a2/}
}
TY  - JOUR
AU  - A. N. Zubkov
AU  - P. A. Ulyashev
TI  - Solvable and unipotent supergroups
JO  - Algebra i logika
PY  - 2014
SP  - 323
EP  - 339
VL  - 53
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2014_53_3_a2/
LA  - ru
ID  - AL_2014_53_3_a2
ER  - 
%0 Journal Article
%A A. N. Zubkov
%A P. A. Ulyashev
%T Solvable and unipotent supergroups
%J Algebra i logika
%D 2014
%P 323-339
%V 53
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2014_53_3_a2/
%G ru
%F AL_2014_53_3_a2
A. N. Zubkov; P. A. Ulyashev. Solvable and unipotent supergroups. Algebra i logika, Tome 53 (2014) no. 3, pp. 323-339. http://geodesic.mathdoc.fr/item/AL_2014_53_3_a2/

[1] G. Kats, “Klassifikatsiya prostykh algebraicheskikh supergrupp”, Uspekhi matem. n., 32:3 (1977), 214–215

[2] I. M. Schepochkina, “Maksimalnye razreshimye podalgebry superalgebr Li $gl(m|n)$ i $sl(m|n)$”, Funkts. analiz i ego pril., 28:2 (1994), 92–94 | MR | Zbl

[3] A. Masuoka, A. N. Zubkov, “Quotient sheaves of algebraic supergroups are superschemes”, J. Algebra, 348:1 (2011), 135–170 | DOI | MR | Zbl

[4] A. Masuoka, “Harish–Chandra pairs for algebraic affine supergroup schemes over an arbitrary field”, Transform. Groups, 17:4 (2012), 1085–1121 | DOI | MR | Zbl

[5] C. Carmeli, R. Fioresi, “Superdistributions, analytic and algebraic super Harish–Chandra pairs”, Pac. J. Math., 263:1 (2013), 29–51 | DOI | MR | Zbl

[6] E. G. Vishnyakova, “On complex Lie supergroups and split homogeneous supermanifolds”, Transform. Groups, 16:1 (2011), 265–285 | DOI | MR | Zbl

[7] A. N. Grishkov, A. N. Zubkov, “Solvable, reductive and quasireductive supergroups”, J. Algebra (to appear)

[8] V. V. Serganova, “Quasireductive supergroups”, New developments in Lie theory and its applications, Proc. of the seventh workshop (Córdoba, Argentina, November 27 – December 1, 2009), Contemp. Math., 544, eds. C. Boyallian et al., Am. Math. Soc., Providence, RI, 2011, 141–159 | DOI | MR | Zbl

[9] R. Weissauer, Semisimple algebraic tensor categories, arXiv: 0909.1793[math.CT]

[10] R. Fioresi, F. Gavarini, Chevalley supergroups, Mem. Am. Math. Soc., 215, no. 1014, 2012 | MR

[11] V. G. Kac, “Lie superalgebras”, Adv. Math., 26:1 (1977), 8–96 | DOI | MR | Zbl

[12] S. Bouarroudj, P. Grozman, D. Leites, “Classification of finite dimensional modular Lie superalgebras with indecomposable Cartan matrix”, SIGMA, Symmetry Integrability Geom. Methods Appl., 5 (2009), paper 060 | MR | Zbl

[13] W. C. Waterhouse, Introduction to affine group schemes, Grad. Texts Math., 66, Springer-Verlag, New York et al., 1979 | DOI | MR | Zbl

[14] A. N. Zubkov, “Affine quotients of supergroups”, Transform. Groups, 14:3 (2009), 713–745 | DOI | MR | Zbl

[15] J. C. Jantzen, Representations of algebraic groups, Pure Applied Math., 131, Academic Press, Inc. (Harcourt Brace Jovanovich, Publ.), Boston etc., 1987 | MR | Zbl

[16] M. Demazure, P. Gabriel, Groupes algébriques, Avec un appendice “Corps de classes local” par Michiel Hazewinkel, v. I, Géométrie algébrique. Généralités. Groupes commutatifs, Masson et Cie, Éditeur, Paris; North-Holland Publ. Co., Amsterdam, 1970 | MR | Zbl

[17] A. N. Zubkov, “On quotients of affine superschemes over finite supergroups”, J. Algebra Appl., 10:3 (2011), 391–408 | DOI | MR | Zbl

[18] A. N. Sergeev, “Irreducible representations of solvable Lie superalgebras”, Represent. Theory, 3 (1999), 435–443 | DOI | MR | Zbl