Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2014_53_3_a2, author = {A. N. Zubkov and P. A. Ulyashev}, title = {Solvable and unipotent supergroups}, journal = {Algebra i logika}, pages = {323--339}, publisher = {mathdoc}, volume = {53}, number = {3}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2014_53_3_a2/} }
A. N. Zubkov; P. A. Ulyashev. Solvable and unipotent supergroups. Algebra i logika, Tome 53 (2014) no. 3, pp. 323-339. http://geodesic.mathdoc.fr/item/AL_2014_53_3_a2/
[1] G. Kats, “Klassifikatsiya prostykh algebraicheskikh supergrupp”, Uspekhi matem. n., 32:3 (1977), 214–215
[2] I. M. Schepochkina, “Maksimalnye razreshimye podalgebry superalgebr Li $gl(m|n)$ i $sl(m|n)$”, Funkts. analiz i ego pril., 28:2 (1994), 92–94 | MR | Zbl
[3] A. Masuoka, A. N. Zubkov, “Quotient sheaves of algebraic supergroups are superschemes”, J. Algebra, 348:1 (2011), 135–170 | DOI | MR | Zbl
[4] A. Masuoka, “Harish–Chandra pairs for algebraic affine supergroup schemes over an arbitrary field”, Transform. Groups, 17:4 (2012), 1085–1121 | DOI | MR | Zbl
[5] C. Carmeli, R. Fioresi, “Superdistributions, analytic and algebraic super Harish–Chandra pairs”, Pac. J. Math., 263:1 (2013), 29–51 | DOI | MR | Zbl
[6] E. G. Vishnyakova, “On complex Lie supergroups and split homogeneous supermanifolds”, Transform. Groups, 16:1 (2011), 265–285 | DOI | MR | Zbl
[7] A. N. Grishkov, A. N. Zubkov, “Solvable, reductive and quasireductive supergroups”, J. Algebra (to appear)
[8] V. V. Serganova, “Quasireductive supergroups”, New developments in Lie theory and its applications, Proc. of the seventh workshop (Córdoba, Argentina, November 27 – December 1, 2009), Contemp. Math., 544, eds. C. Boyallian et al., Am. Math. Soc., Providence, RI, 2011, 141–159 | DOI | MR | Zbl
[9] R. Weissauer, Semisimple algebraic tensor categories, arXiv: 0909.1793[math.CT]
[10] R. Fioresi, F. Gavarini, Chevalley supergroups, Mem. Am. Math. Soc., 215, no. 1014, 2012 | MR
[11] V. G. Kac, “Lie superalgebras”, Adv. Math., 26:1 (1977), 8–96 | DOI | MR | Zbl
[12] S. Bouarroudj, P. Grozman, D. Leites, “Classification of finite dimensional modular Lie superalgebras with indecomposable Cartan matrix”, SIGMA, Symmetry Integrability Geom. Methods Appl., 5 (2009), paper 060 | MR | Zbl
[13] W. C. Waterhouse, Introduction to affine group schemes, Grad. Texts Math., 66, Springer-Verlag, New York et al., 1979 | DOI | MR | Zbl
[14] A. N. Zubkov, “Affine quotients of supergroups”, Transform. Groups, 14:3 (2009), 713–745 | DOI | MR | Zbl
[15] J. C. Jantzen, Representations of algebraic groups, Pure Applied Math., 131, Academic Press, Inc. (Harcourt Brace Jovanovich, Publ.), Boston etc., 1987 | MR | Zbl
[16] M. Demazure, P. Gabriel, Groupes algébriques, Avec un appendice “Corps de classes local” par Michiel Hazewinkel, v. I, Géométrie algébrique. Généralités. Groupes commutatifs, Masson et Cie, Éditeur, Paris; North-Holland Publ. Co., Amsterdam, 1970 | MR | Zbl
[17] A. N. Zubkov, “On quotients of affine superschemes over finite supergroups”, J. Algebra Appl., 10:3 (2011), 391–408 | DOI | MR | Zbl
[18] A. N. Sergeev, “Irreducible representations of solvable Lie superalgebras”, Represent. Theory, 3 (1999), 435–443 | DOI | MR | Zbl