Strong constructivizability of Boolean algebras of elementary characteristic $(\infty,0,0)$
Algebra i logika, Tome 53 (2014) no. 2, pp. 185-205
Voir la notice de l'article provenant de la source Math-Net.Ru
We give a complete description of conditions of being strongly constructivizable for Boolean algebras of elementary characteristic $(\infty,0,0)$ in terms of being computable for a sequence of canonical Ershov–Tarski predicates on Boolean algebras.
Keywords:
Boolean algebra, computable model, ideals of Boolean algebra.
@article{AL_2014_53_2_a3,
author = {M. N. Leontieva},
title = {Strong constructivizability of {Boolean} algebras of elementary characteristic $(\infty,0,0)$},
journal = {Algebra i logika},
pages = {185--205},
publisher = {mathdoc},
volume = {53},
number = {2},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2014_53_2_a3/}
}
M. N. Leontieva. Strong constructivizability of Boolean algebras of elementary characteristic $(\infty,0,0)$. Algebra i logika, Tome 53 (2014) no. 2, pp. 185-205. http://geodesic.mathdoc.fr/item/AL_2014_53_2_a3/