Heritability of the property $\mathcal D_\pi$ by overgroups of $\pi$-Hall subgroups in the case where~$2\in\pi$
Algebra i logika, Tome 53 (2014) no. 1, pp. 26-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\pi$ be a set of prime numbers. We say that a finite group $G$ is a $\mathcal D_\pi$-group if all of its maximal $\pi$-subgroups are conjugate. Question 17.44(b) in Unsolved Problems in Group Theory, The Kourovka Notebook, asks whether an overgroup of a $\pi$-Hall subgroup of a $\mathcal D_\pi$-group is always a $\mathcal D_\pi$-group. We give an affirmative answer to this question in the case where $2\in\pi$.
Keywords: finite group, $\pi$-Hall subgroup, $\mathcal D_\pi$-group, group of Lie type, finite simple group, maximal subgroup of odd index.
@article{AL_2014_53_1_a2,
     author = {N. Ch. Manzaeva},
     title = {Heritability of the property $\mathcal D_\pi$ by overgroups of $\pi${-Hall} subgroups in the case where~$2\in\pi$},
     journal = {Algebra i logika},
     pages = {26--44},
     publisher = {mathdoc},
     volume = {53},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2014_53_1_a2/}
}
TY  - JOUR
AU  - N. Ch. Manzaeva
TI  - Heritability of the property $\mathcal D_\pi$ by overgroups of $\pi$-Hall subgroups in the case where~$2\in\pi$
JO  - Algebra i logika
PY  - 2014
SP  - 26
EP  - 44
VL  - 53
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2014_53_1_a2/
LA  - ru
ID  - AL_2014_53_1_a2
ER  - 
%0 Journal Article
%A N. Ch. Manzaeva
%T Heritability of the property $\mathcal D_\pi$ by overgroups of $\pi$-Hall subgroups in the case where~$2\in\pi$
%J Algebra i logika
%D 2014
%P 26-44
%V 53
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2014_53_1_a2/
%G ru
%F AL_2014_53_1_a2
N. Ch. Manzaeva. Heritability of the property $\mathcal D_\pi$ by overgroups of $\pi$-Hall subgroups in the case where~$2\in\pi$. Algebra i logika, Tome 53 (2014) no. 1, pp. 26-44. http://geodesic.mathdoc.fr/item/AL_2014_53_1_a2/

[1] P. Hall, “Theorems like Sylow's”, Proc. Lond. Math. Soc. III Ser., 6:22 (1956), 286–304 | DOI | MR | Zbl

[2] Nereshënnye voprosy teorii grupp. Kourovskaya tetrad, 17-e izd., In-t matem. SO RAN, Novosibirsk, 2010

[3] E. P. Vdovin, D. O. Revin, “Pronormalnost khollovykh podgrupp v konechnykh prostykh gruppakh”, Sib. matem. zh., 53:3 (2012), 527–542 | MR | Zbl

[4] E. P. Vdovin, D. O. Revin, “O pronormalnosti khollovykh podgrupp”, Sib. matem. zh., 54:1 (2013), 35–43 | MR | Zbl

[5] D. O. Revin, E. P. Vdovin, “Hall subgroups of finite groups”, Ischia group theory 2004, Proc. conf. honor Marcel Herzog (Naples, Italy, March 31 – April 03, 2004), Contemp. Math., 402, Israel Math. Conf. Proc., eds. Arad Zvi et al., Am. Math. Soc., Providence, RI; Bar-Ilan Univ., Ramat Gan, 2006, 229–263 | DOI | MR | Zbl

[6] E. P. Vdovin, N. Ch. Manzaeva, D. O. Revin, “O nasleduemosti svoistva $D_\pi$ podgruppami”, Trudy In-ta matem. mekh. UrO RAN, 17, no. 4, 2011, 44–52

[7] D. Gorenstein, R. Lyons, R. Solomon, The classification of the finite simple groups, Part I. Chapter A: Almost simple $K$-groups, Math. Surv. Monogr., 40, no. 3, Am. Math. Soc., Providence, RI, 1998 | MR | Zbl

[8] P. Kleidman, M. Liebeck, The subgroup structure of the finite classical groups, London Math. Soc. Lect. Note Series, 129, Cambridge Univ. Press, Cambridge, 1990 | MR | Zbl

[9] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of finite groups, Clarendon Press, Oxford, 1985 | MR | Zbl

[10] E. P. Vdovin, D. O. Revin, “Teoremy silovskogo tipa”, Uspekhi matem. nauk, 66:5(401) (2011), 3–46 | DOI | MR | Zbl

[11] D. O. Revin, “Svoistvo $D_\pi$ v konechnykh prostykh gruppakh”, Algebra i logika, 47:3 (2008), 364–394 | MR | Zbl

[12] N. V. Maslova, “Klassifikatsiya maksimalnykh podgrupp nechëtnogo indeksa v konechnykh prostykh klassicheskikh gruppakh”, Tr. In-ta matem. mekh. UrO RAN, 14, no. 4, 2008, 100–118

[13] M. W. Liebeck, J. Saxl, “The primitive permutation groups of odd degree”, J. Lond. Math. Soc. II Ser., 31:2 (1985), 250–264 | DOI | MR | Zbl

[14] M. Aschbacher, “On finite groups of Lie type and odd characteristic”, J. Algebra, 66:2 (1980), 400–424 | DOI | MR | Zbl

[15] D. Deriziotis, Conjugacy classes and centralizers of semisimple elements in finite groups of Lie type, Vorlesungen Fachbereich Math. Univ. Essen, 11, 1984 | MR | Zbl

[16] V. D. Mazurov, D. O. Revin, “O khollovom $D_\pi$-svoistve dlya konechnykh grupp”, Sib. matem. zh., 38:1 (1997), 125–134 | MR | Zbl