Crystallographic groups with two lattices and metric Lie algebras
Algebra i logika, Tome 52 (2013) no. 6, pp. 772-777.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AL_2013_52_6_a6,
     author = {V. A. Churkin},
     title = {Crystallographic groups with two lattices and metric {Lie} algebras},
     journal = {Algebra i logika},
     pages = {772--777},
     publisher = {mathdoc},
     volume = {52},
     number = {6},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2013_52_6_a6/}
}
TY  - JOUR
AU  - V. A. Churkin
TI  - Crystallographic groups with two lattices and metric Lie algebras
JO  - Algebra i logika
PY  - 2013
SP  - 772
EP  - 777
VL  - 52
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2013_52_6_a6/
LA  - ru
ID  - AL_2013_52_6_a6
ER  - 
%0 Journal Article
%A V. A. Churkin
%T Crystallographic groups with two lattices and metric Lie algebras
%J Algebra i logika
%D 2013
%P 772-777
%V 52
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2013_52_6_a6/
%G ru
%F AL_2013_52_6_a6
V. A. Churkin. Crystallographic groups with two lattices and metric Lie algebras. Algebra i logika, Tome 52 (2013) no. 6, pp. 772-777. http://geodesic.mathdoc.fr/item/AL_2013_52_6_a6/

[1] L. Bieberbach, “Über die Bewegungsgruppen der Euklidischen Räume”, (Erste Abh.), Math. Ann., 70 (1911), 297–336 | DOI | MR | Zbl

[2] L.`Bieberbach, “Über die Bewegungsgruppen der euklidischen Räume”, (Zweite Abhandlung), Die Gruppen mit einem endlichen Fundamentalbereich. Math. Ann., 72 (1912), 400–412 | MR | Zbl

[3] R. M. Garipov, “Gruppy ornamentov na ploskosti Minkovskogo”, Algebra i logika, 42:6 (2003), 655–682 | MR | Zbl

[4] V. A. Churkin, “Oslablennaya teorema Biberbakha dlya kristallograficheskikh grupp v psevdoevklidovykh prostranstvakh”, Sib. matem. zh., 51:3 (2010), 700–714 | MR | Zbl

[5] I. Kath, M. Olbrich, “Metric Lie algebras and quadratic extensions”, Transform. Groups, 11:1 (2006), 87–131 | DOI | MR | Zbl