Rigid division algebras
Algebra i logika, Tome 52 (2013) no. 6, pp. 712-730.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that finite-dimensional division algebras over finitely generated fields do not form rigid rings. Multiplicative groups of such algebras have central automorphisms which do not extend to automorphisms of the algebras themselves.
Keywords: finite-dimensional division algebra, finitely generated field, rigid algebra
Mots-clés : automorphism.
@article{AL_2013_52_6_a3,
     author = {K. N. Ponomarev},
     title = {Rigid division algebras},
     journal = {Algebra i logika},
     pages = {712--730},
     publisher = {mathdoc},
     volume = {52},
     number = {6},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2013_52_6_a3/}
}
TY  - JOUR
AU  - K. N. Ponomarev
TI  - Rigid division algebras
JO  - Algebra i logika
PY  - 2013
SP  - 712
EP  - 730
VL  - 52
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2013_52_6_a3/
LA  - ru
ID  - AL_2013_52_6_a3
ER  - 
%0 Journal Article
%A K. N. Ponomarev
%T Rigid division algebras
%J Algebra i logika
%D 2013
%P 712-730
%V 52
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2013_52_6_a3/
%G ru
%F AL_2013_52_6_a3
K. N. Ponomarev. Rigid division algebras. Algebra i logika, Tome 52 (2013) no. 6, pp. 712-730. http://geodesic.mathdoc.fr/item/AL_2013_52_6_a3/

[1] C. E. Rickart, “One-to-one mappings of rings and lattices”, Bull. Am. Math. Soc., 54 (1948), 758–764 | DOI | MR | Zbl

[2] R. E. Johnson, “Rings with unique addition”, Proc. Am. Math. Soc., 9 (1958), 55–61 | DOI | MR

[3] A. V. Mikhalev, “Izomorfizmy polugrupp endomorfizmov modulei”, Algebra i logika, 5:5 (1966), 59–67 | MR | Zbl

[4] A. V. Mikhalev, “Izomorfizmy polugrupp endomorfizmov modulei. 2”, Algebra i logika, 6:2 (1967), 35–47 | MR | Zbl

[5] I. V. Arzhantsev, “Odnoznachnost slozheniya v poluprostykh algebrakh Li”, Uspekhi matem. n., 56:3(339) (2001), 155–156 | DOI | MR | Zbl

[6] I. V. Arzhantsev, “Some results on uniqueness of addition in Lie algebras”, Proceedings of the 1st colloquium on Lie theory and applications (Univ. Vigo, Vigo, Spain, July 17–22, 2000), Colecc. Congr., 35, eds. I. Bajo et al., Univ. Vigo, Servicio Publ., Vigo, 2002, 19–24 | MR | Zbl

[7] W. Stephenson, “Unique addition rings”, Can. J. Math., 21 (1969), 1455–1461 | DOI | MR | Zbl

[8] K. N. Ponomarëv, Zhëstkie algebry i neassotsiativnye koltsa, Izd-vo NGTU, Novosibirsk, 2007

[9] P. K. Draxl, Skew fields, London Math. Soc. Lecture Note Ser., 81, Cambridge Univ. Press, Cambridge etc., 1983 | MR | Zbl

[10] L. Fuks, Beskonechnye abelevy gruppy, v. 2, Mir, M., 1977