$P$-stable Abelian groups
Algebra i logika, Tome 52 (2013) no. 5, pp. 606-631

Voir la notice de l'article provenant de la source Math-Net.Ru

$(P,a)$-stable and $(P,s)$-stable Abelian groups are described. It is also proved that every Abelian group is $(P,p)$-stable. In particular, results due to M. A. Rusaleev [Algebra Logika, 50, No. 2, 231–245 (2011)] and T. A. Nurmagambetov [Proc. 11th Conf. Math. Logic, Kazan State Univ., Kazan (1992), p. 106] derive from these.
Keywords: $(P,a)$-stable Abelian group, $(P,s)$-stable Abelian group.
@article{AL_2013_52_5_a6,
     author = {E. A. Palyutin},
     title = {$P$-stable {Abelian} groups},
     journal = {Algebra i logika},
     pages = {606--631},
     publisher = {mathdoc},
     volume = {52},
     number = {5},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2013_52_5_a6/}
}
TY  - JOUR
AU  - E. A. Palyutin
TI  - $P$-stable Abelian groups
JO  - Algebra i logika
PY  - 2013
SP  - 606
EP  - 631
VL  - 52
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2013_52_5_a6/
LA  - ru
ID  - AL_2013_52_5_a6
ER  - 
%0 Journal Article
%A E. A. Palyutin
%T $P$-stable Abelian groups
%J Algebra i logika
%D 2013
%P 606-631
%V 52
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2013_52_5_a6/
%G ru
%F AL_2013_52_5_a6
E. A. Palyutin. $P$-stable Abelian groups. Algebra i logika, Tome 52 (2013) no. 5, pp. 606-631. http://geodesic.mathdoc.fr/item/AL_2013_52_5_a6/