$P$-stable Abelian groups
Algebra i logika, Tome 52 (2013) no. 5, pp. 606-631.

Voir la notice de l'article provenant de la source Math-Net.Ru

$(P,a)$-stable and $(P,s)$-stable Abelian groups are described. It is also proved that every Abelian group is $(P,p)$-stable. In particular, results due to M. A. Rusaleev [Algebra Logika, 50, No. 2, 231–245 (2011)] and T. A. Nurmagambetov [Proc. 11th Conf. Math. Logic, Kazan State Univ., Kazan (1992), p. 106] derive from these.
Keywords: $(P,a)$-stable Abelian group, $(P,s)$-stable Abelian group.
@article{AL_2013_52_5_a6,
     author = {E. A. Palyutin},
     title = {$P$-stable {Abelian} groups},
     journal = {Algebra i logika},
     pages = {606--631},
     publisher = {mathdoc},
     volume = {52},
     number = {5},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2013_52_5_a6/}
}
TY  - JOUR
AU  - E. A. Palyutin
TI  - $P$-stable Abelian groups
JO  - Algebra i logika
PY  - 2013
SP  - 606
EP  - 631
VL  - 52
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2013_52_5_a6/
LA  - ru
ID  - AL_2013_52_5_a6
ER  - 
%0 Journal Article
%A E. A. Palyutin
%T $P$-stable Abelian groups
%J Algebra i logika
%D 2013
%P 606-631
%V 52
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2013_52_5_a6/
%G ru
%F AL_2013_52_5_a6
E. A. Palyutin. $P$-stable Abelian groups. Algebra i logika, Tome 52 (2013) no. 5, pp. 606-631. http://geodesic.mathdoc.fr/item/AL_2013_52_5_a6/

[1] T. G. Mustafin, “Novye ponyatiya stabilnosti teorii”, Trudy sovetsko-frantsuzskogo kollokviuma po teorii modelei, Karaganda, 1990, 112–125 | MR | Zbl

[2] E. A. Palyutin, “$E^*$-stabilnye teorii”, Algebra i logika, 42:2 (2003), 194–210 | MR | Zbl

[3] M. D. Morley, “Categoricity in power”, Trans. Am. Math. Soc., 114:2 (1965), 514–538 | DOI | MR | Zbl

[4] S. Shelah, “Stable theories”, Isr. J. Math., 7:3 (1969), 187–202 | DOI | MR | Zbl

[5] M. A. Rusaleev, “Kharakterizatsiya $(p,1)$-stabilnykh teorii”, Algebra i logika, 46:3 (2007), 346–359 | MR | Zbl

[6] M. A. Rusaleev, “Obobschënnaya stabilnost abelevykh grupp bez krucheniya”, Algebra i logika, 50:2 (2011), 231–245 | MR | Zbl

[7] T. A. Nurmagambetov, “$P$-stabilnost polnykh teorii abelevykh grupp”, XI Mezhrespubl. konf. po matem. logike, Tez. soobschenii, Izd-vo KGU, Kazan, 1992, 106

[8] E. A. Palyutin, “Obobschënno stabilnye abelevy gruppy”, Mezhd. konf. Maltsevskie chteniya, Tez. dokl., In-t matem. SO RAN, Novosibirsk, 2011, 81

[9] L. Fuks, Beskonechnye abelevy gruppy, v. 1, Mir, M., 1974

[10] W. Szmielew, “Elementary properties of abelian groups”, Fundam. Math., 41 (1955), 203–271 | MR | Zbl

[11] Yu. L. Ershov, E. A. Palyutin, Matematicheskaya logika, 6-e izd., Izd-vo “Fizmatlit”, M., 2011

[12] M. Ziegler, “Model theory of modules”, Ann. Pure Appl. Logic, 26:2 (1984), 149–213 | DOI | MR | Zbl