Groups acting on groups
Algebra i logika, Tome 52 (2013) no. 5, pp. 582-588

Voir la notice de l'article provenant de la source Math-Net.Ru

Combinatorial methods are used to give a characterization of finite groups $G$ with $\mathrm{Aut}(G)$ Abelian and to show that if $G$ is a finite group and $\alpha$ is an automorphism of $G$, then the number of fixed points of $\alpha$ in $G$ is a multiple of the number of fixed points of $\alpha$ in $G/Z(G)$.
Keywords: finite groups, automorphisms, fixed points, Abelian automorphism groups.
Mots-clés : orbits
@article{AL_2013_52_5_a3,
     author = {M. Deaconescu and G. L. Walls},
     title = {Groups acting on groups},
     journal = {Algebra i logika},
     pages = {582--588},
     publisher = {mathdoc},
     volume = {52},
     number = {5},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2013_52_5_a3/}
}
TY  - JOUR
AU  - M. Deaconescu
AU  - G. L. Walls
TI  - Groups acting on groups
JO  - Algebra i logika
PY  - 2013
SP  - 582
EP  - 588
VL  - 52
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2013_52_5_a3/
LA  - ru
ID  - AL_2013_52_5_a3
ER  - 
%0 Journal Article
%A M. Deaconescu
%A G. L. Walls
%T Groups acting on groups
%J Algebra i logika
%D 2013
%P 582-588
%V 52
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2013_52_5_a3/
%G ru
%F AL_2013_52_5_a3
M. Deaconescu; G. L. Walls. Groups acting on groups. Algebra i logika, Tome 52 (2013) no. 5, pp. 582-588. http://geodesic.mathdoc.fr/item/AL_2013_52_5_a3/