Simple associative $\Gamma$-conformal algebras of finite type for a~torsion-free group~$\Gamma$
Algebra i logika, Tome 52 (2013) no. 5, pp. 559-581.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study $\Gamma$-conformal algebras which are a discrete analog of conformal algebras in the sense of V. G. Kac. For a torsion-free group $\Gamma$, simple and semisimple associative $\Gamma$-conformal algebras of finite type are described and an analog of Wedderburn's theorem is proved.
Mots-clés : pseudoalgebra, conformal algebra, $\Gamma$-conformal algebra
Keywords: Wedderburn's theorem, partial Abelian algebra.
@article{AL_2013_52_5_a2,
     author = {V. Yu. Gubarev},
     title = {Simple associative $\Gamma$-conformal algebras of finite type for a~torsion-free group~$\Gamma$},
     journal = {Algebra i logika},
     pages = {559--581},
     publisher = {mathdoc},
     volume = {52},
     number = {5},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2013_52_5_a2/}
}
TY  - JOUR
AU  - V. Yu. Gubarev
TI  - Simple associative $\Gamma$-conformal algebras of finite type for a~torsion-free group~$\Gamma$
JO  - Algebra i logika
PY  - 2013
SP  - 559
EP  - 581
VL  - 52
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2013_52_5_a2/
LA  - ru
ID  - AL_2013_52_5_a2
ER  - 
%0 Journal Article
%A V. Yu. Gubarev
%T Simple associative $\Gamma$-conformal algebras of finite type for a~torsion-free group~$\Gamma$
%J Algebra i logika
%D 2013
%P 559-581
%V 52
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2013_52_5_a2/
%G ru
%F AL_2013_52_5_a2
V. Yu. Gubarev. Simple associative $\Gamma$-conformal algebras of finite type for a~torsion-free group~$\Gamma$. Algebra i logika, Tome 52 (2013) no. 5, pp. 559-581. http://geodesic.mathdoc.fr/item/AL_2013_52_5_a2/

[1] V. G. Kac, Vertex algebras for beginners, Univ. Lect. Ser., 10, Am. Math. Soc., Providence, RI, 1996 | MR | Zbl

[2] A. A. Belavin, A. M. Polyakov, A. B. Zamolodchikov, “Infinite conformal symmetry in two-dimensional quantum field theory”, Nucl. Phys. B, 241:2 (1984), 333–380 | DOI | MR | Zbl

[3] R. E. Borcherds, “Vertex algebras, Kac-Moody algebras, and the monster”, Proc. Natl. Acad. Sci. USA, 83 (1986), 3068–3071 | DOI | MR

[4] C. Dong, J. Lepowsky, Generalized vertex algebras and relative vertex operators, Progress Math., 112, Birkhauser Boston, Boston, Mass., 1993 | MR | Zbl

[5] I. Frenkel, J. Lepowsky, A. Meurman, Vertex operator algebras and the monster, Pure Appl. Math., 134, Academic Press, Inc., Boston etc., 1988 | MR | Zbl

[6] A. D'Andrea, V. G. Kac, “Structure theory of finite conformal algebras”, Sel. Math., New Ser., 4:3 (1998), 377–418 | DOI | MR

[7] B. Bakalov, A. D'Andrea, V. G. Kac, “Theory of finite pseudoalgebras”, Adv. Math., 162:1 (2001), 1–140 | DOI | MR | Zbl

[8] E. Zelmanov, “On the structure of conformal algebras”, Combinatorial and computational algebra, Int. conf. comb. comput. algebra (May 24–29, 1999, Hong Kong, China), Contemp. Math., 264, eds. Kai Yuen Chan et al., Am. Math. Soc., Providence, RI, 2000, 139–153 | DOI | MR | Zbl

[9] P. S. Kolesnikov, “Simple associative conformal algebras of linear growth”, J. Algebra, 295:1 (2006), 247–268 | DOI | MR | Zbl

[10] M. I. Golenishcheva, V. G. Kac, “$\Gamma$-conformal algebras”, J. Math. Phys., 39:4 (1998), 2290–2305 | DOI | MR | Zbl

[11] H. Li, “On certain generalizations of twisted affine Lie algebras and quasimodules for $\Gamma$-vertex algebras”, J. Pure Appl. Algebra, 209:3 (2007), 853–871 | DOI | MR | Zbl

[12] V. Yu. Gubarev, P. S. Kolesnikov, “Embedding of dendriform algebras into Rota–Baxter algebras”, Cent. Eur. J. Math., 11:2 (2013), 226–245 | DOI | MR | Zbl

[13] P. S. Kolesnikov, “Mnogoobraziya dialgebr i konformnye algebry”, Sib. matem. zh., 49:2 (2008), 323–339 | MR | Zbl

[14] P. S. Kolesnikov, “O neprivodimykh algebrakh konformnykh endomorfizmov nad lineinoi algebraicheskoi gruppoi”, Algebra, Sovremennaya matematika i ee prilozheniya, 60, 2008, 42–56 | MR

[15] E. N. Poroshenko, “O bazisakh chastichno kommutativnykh algebrakh Li”, Algebra i logika, 50:5 (2011), 595–614 | MR | Zbl

[16] G. Duchamp, D. Krob, “Free partially commutative structures”, J. Algebra, 156:2 (1993), 318–361 | DOI | MR | Zbl

[17] R. E. Block, “Determination of the differentiably simple rings with a minimal ideal”, Ann. Math. (2), 90:3 (1969), 433–459 | DOI | MR | Zbl

[18] E. C. Posner, “Differentiable simple rings”, Proc. Am. Math. Soc., 11:3 (1960), 337–343 | DOI | MR | Zbl

[19] P. Kolesnikov, “Identities of conformal algebras and pseudoalgebras”, Commun. Algebra, 34:6 (2006), 1965–1979 | DOI | MR | Zbl

[20] S. Leng, Algebra, Mir, M., 1968

[21] I. N. Herstein, Noncommutative rings, The Carus Math. Monographs, 15, Math. Assoc. Am., distrib. John Wiley and Sons, Inc., Washington, DC, 1968 | MR

[22] R. B. Reisel, “A generalization of the Wedderburn-Malcev theorem to infinite dimensional algebras”, Proc. Am. Math. Soc., 7 (1956), 493–499 | DOI | MR | Zbl