Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2013_52_5_a1, author = {A. A. Buturlakin and A. V. Vasil'ev}, title = {Locally finite groups with bounded centralizer chains}, journal = {Algebra i logika}, pages = {553--558}, publisher = {mathdoc}, volume = {52}, number = {5}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2013_52_5_a1/} }
A. A. Buturlakin; A. V. Vasil'ev. Locally finite groups with bounded centralizer chains. Algebra i logika, Tome 52 (2013) no. 5, pp. 553-558. http://geodesic.mathdoc.fr/item/AL_2013_52_5_a1/
[1] A. Myasnikov, P. Shumyatsky, “Discriminating groups and $c$-dimension”, J. Group Theory, 7:1 (2004), 135–142 | MR | Zbl
[2] R. M. Bryant, B. Hartley, “Periodic locally soluble groups with the minimal condition on centralizers”, J. Algebra, 61 (1979), 328–334 | DOI | MR | Zbl
[3] E. I. Khukhro, “On solubility of groups with bounded centralizer chains”, Glasg. Math. J., 51:1 (2009), 49–54 | DOI | MR | Zbl
[4] U. Meierfrankenfeld, Locally finite, simple groups, Lect. notes, , 2011 http://www.math.msu.edu/~meier/Classnotes/LFG/LFG.pdf
[5] D. F. Holt, “Representing quotients of permutation groups”, Q. J. Math., Oxf. II Ser., 48:191 (1997), 347–350 | DOI | MR | Zbl
[6] D. Easdown, C. E. Praeger, “On minimal faithful permutation representations of finite groups”, Bull. Aust. Math. Soc., 38:2 (1988), 207–220 | DOI | MR | Zbl