Locally finite groups with bounded centralizer chains
Algebra i logika, Tome 52 (2013) no. 5, pp. 553-558.

Voir la notice de l'article provenant de la source Math-Net.Ru

The $c$-dimension of a group $G$ is the maximal length of a chain of nested centralizers in $G$. We prove that a locally finite group of finite $c$-dimension $k$ has less than $5k$ non-Abelian composition factors.
Keywords: locally finite group, lattice of centralizers
Mots-clés : non-Abelian simple group, $c$-dimension.
@article{AL_2013_52_5_a1,
     author = {A. A. Buturlakin and A. V. Vasil'ev},
     title = {Locally finite groups with bounded centralizer chains},
     journal = {Algebra i logika},
     pages = {553--558},
     publisher = {mathdoc},
     volume = {52},
     number = {5},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2013_52_5_a1/}
}
TY  - JOUR
AU  - A. A. Buturlakin
AU  - A. V. Vasil'ev
TI  - Locally finite groups with bounded centralizer chains
JO  - Algebra i logika
PY  - 2013
SP  - 553
EP  - 558
VL  - 52
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2013_52_5_a1/
LA  - ru
ID  - AL_2013_52_5_a1
ER  - 
%0 Journal Article
%A A. A. Buturlakin
%A A. V. Vasil'ev
%T Locally finite groups with bounded centralizer chains
%J Algebra i logika
%D 2013
%P 553-558
%V 52
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2013_52_5_a1/
%G ru
%F AL_2013_52_5_a1
A. A. Buturlakin; A. V. Vasil'ev. Locally finite groups with bounded centralizer chains. Algebra i logika, Tome 52 (2013) no. 5, pp. 553-558. http://geodesic.mathdoc.fr/item/AL_2013_52_5_a1/

[1] A. Myasnikov, P. Shumyatsky, “Discriminating groups and $c$-dimension”, J. Group Theory, 7:1 (2004), 135–142 | MR | Zbl

[2] R. M. Bryant, B. Hartley, “Periodic locally soluble groups with the minimal condition on centralizers”, J. Algebra, 61 (1979), 328–334 | DOI | MR | Zbl

[3] E. I. Khukhro, “On solubility of groups with bounded centralizer chains”, Glasg. Math. J., 51:1 (2009), 49–54 | DOI | MR | Zbl

[4] U. Meierfrankenfeld, Locally finite, simple groups, Lect. notes, , 2011 http://www.math.msu.edu/~meier/Classnotes/LFG/LFG.pdf

[5] D. F. Holt, “Representing quotients of permutation groups”, Q. J. Math., Oxf. II Ser., 48:191 (1997), 347–350 | DOI | MR | Zbl

[6] D. Easdown, C. E. Praeger, “On minimal faithful permutation representations of finite groups”, Bull. Aust. Math. Soc., 38:2 (1988), 207–220 | DOI | MR | Zbl