The coordinate ring of an $n$-dimensional sphere and some examples of differentially simple algebras
Algebra i logika, Tome 52 (2013) no. 4, pp. 416-434.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using the coordinate ring of an $n$-dimensional real sphere, we construct examples of differentially simple algebras which are finitely generated projective, but nonfree, modules over their centroids. As a consequence, examples of such algebras are obtained in varieties of associative, Lie, alternative, Mal'tsev, and Jordan algebras.
Keywords: differentially simple algebra, variety, Lie algebra, alternative algebra, Mal’tsev algebra, Jordan algebra.
Mots-clés : module, centroid
@article{AL_2013_52_4_a1,
     author = {V. N. Zhelyabin and A. A. Popov and I. P. Shestakov},
     title = {The coordinate ring of an $n$-dimensional sphere and some examples of differentially simple algebras},
     journal = {Algebra i logika},
     pages = {416--434},
     publisher = {mathdoc},
     volume = {52},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2013_52_4_a1/}
}
TY  - JOUR
AU  - V. N. Zhelyabin
AU  - A. A. Popov
AU  - I. P. Shestakov
TI  - The coordinate ring of an $n$-dimensional sphere and some examples of differentially simple algebras
JO  - Algebra i logika
PY  - 2013
SP  - 416
EP  - 434
VL  - 52
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2013_52_4_a1/
LA  - ru
ID  - AL_2013_52_4_a1
ER  - 
%0 Journal Article
%A V. N. Zhelyabin
%A A. A. Popov
%A I. P. Shestakov
%T The coordinate ring of an $n$-dimensional sphere and some examples of differentially simple algebras
%J Algebra i logika
%D 2013
%P 416-434
%V 52
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2013_52_4_a1/
%G ru
%F AL_2013_52_4_a1
V. N. Zhelyabin; A. A. Popov; I. P. Shestakov. The coordinate ring of an $n$-dimensional sphere and some examples of differentially simple algebras. Algebra i logika, Tome 52 (2013) no. 4, pp. 416-434. http://geodesic.mathdoc.fr/item/AL_2013_52_4_a1/

[1] H. Zassenhaus, “Über Liesche Ringe mit Primzahlcharakteristik”, Abh. Math. Semin. Hansische Univ., 13 (1939), 1–100 (German) | DOI | MR | Zbl

[2] A. A. Albert, “On commutative power-associative algebras of degree two”, Trans. Am. Math. Soc., 74:2 (1953), 323–343 | DOI | MR | Zbl

[3] E. C. Posner, “Differentiable simple rings”, Proc. Am. Math. Soc., 11:3 (1960), 337–343 | DOI | MR | Zbl

[4] S. Yuan, “Differentiably simple rings of prime characteristic”, Duke Math. J., 31:4 (1964), 623–630 | DOI | MR | Zbl

[5] R. E. Block, “Determination of the differentiably simple rings with a minimal ideal”, Ann. Math. (2), 90:3 (1969), 433–459 | DOI | MR | Zbl

[6] A. A. Popov, “Differentsialno prostye alternativnye algebry”, Algebra i logika, 49:5 (2010), 670–689 | MR | Zbl

[7] A. A. Popov, “Differentsialno prostye iordanovy algebry”, Sib. matem. zh., prinyata v pechat

[8] S.-J. Cheng, “Differentiably simple Lie superalgebras and representations of semisimple Lie superalgebras”, J. Algebra, 173:1 (1995), 1–43 | DOI | MR | Zbl

[9] I. P. Shestakov, “Pervichnye alternativnye superalgebry proizvolnoi kharakteristiki”, Algebra i logika, 36:6 (1997), 675–716 | MR | Zbl

[10] C. Martinez, E. Zelmanov, “Simple finite-dimensional Jordan superalgebras of prime characteristic”, J. Algebra, 236:2 (2001), 575–629 | DOI | MR | Zbl

[11] S. V. Polikarpov, I. P. Shestakov, “Neassotsiativnye affinnye algebry”, Algebra i logika, 29:6 (1990), 709–723 | MR | Zbl

[12] M. Gr. Voskoglou, “A note on derivations of commutative rings”, MATH' 10, Proc. 15th WSEAS int. conf. appl. math., WSEAS, Stevens Point, 2010, 73–78

[13] M. Gr. Voskoglou, “A note on the simplicity of skew polynomial rings of derivation type”, Acta Math. Univ. Ostrav., 12:1 (2004), 61–64 | MR | Zbl

[14] R. G. Swan, “Vector bundles and projective modules”, Trans. Am. Math. Soc., 105:2 (1962), 264–277 | DOI | MR | Zbl

[15] V. N. Zhelyabin, “Differentsialnye algebry i prostye iordanovy superalgebry”, Matem. tr., 12:2 (2009), 41–51 | MR | Zbl

[16] V. N. Zhelyabin, “Differential algebras and simple Jordan superalgebras”, Sib. Adv. Math., 20:3 (2010), 223–230 | DOI | MR

[17] V. N. Zhelyabin, I. P. Shestakov, “Prostye spetsialnye iordanovy superalgebry s assotsiativnoi chëtnoi chastyu”, Sib. matem. zh., 45:5 (2004), 1046–1072 | MR | Zbl

[18] I. P. Shestakov, “Prostye superalgebry tipa $(-1,1)$”, Algebra i logika, 37:6 (1998), 721–739 | MR | Zbl

[19] N. Dzhekobson, Stroenie kolets, IL, M., 1961

[20] B. Allison, S. Berman, A. Pianzola, “Covering algebras. II: Isomorphism of loop algebras”, J. Reine Angew. Math., 571 (2004), 39–71 | MR | Zbl

[21] S. Khelgason, Differentsialnaya geometriya, gruppy Li i simmetricheskie prostranstva, KhKh vek. Matem. mekh., 11, Faktorial Press, M., 2005

[22] K. A. Zhevlakov, A. M. Slinko, I. P. Shestakov, A. I. Shirshov, Koltsa, blizkie k assotsiativnym, Nauka, M., 1978 | MR | Zbl

[23] E. N. Kuzmin, “Algebry Maltseva i ikh predstavleniya”, Algebra i logika, 7:4 (1968), 48–69 | MR

[24] E. N. Kuzmin, “Struktura i predstavleniya konechnomernykh algebr Maltseva”, Issledovaniya po teorii kolets i algebr, Trudy In-ta matem. SO AN SSSR, 16, Nauka, Novosibirsk, 1989, 75–101 | MR

[25] V. N. Zhelyabin, “Novye primery prostykh iordanovykh superalgebr nad proizvolnym polem kharakteristiki nul”, Algebra i analiz, 24:4 (2012), 84–96 | MR | Zbl

[26] A. A. Suslin, “Algebraicheskaya $K$-teoriya”, Itogi nauki i tekhn. Ser. Algebra. Topol. Geom., 20, VINITI, M., 1982, 71–152 | MR | Zbl