Abelian $p$-groups and autostability relative to an oracle
Algebra i logika, Tome 52 (2013) no. 4, pp. 403-415.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct an example of a constructivizable, but not $0'''$-autostable, Abelian group of type 2 whose divisible part has dimension 1.
Keywords: Abelian $p$-group
Mots-clés : constructivizable group, $0'''$-autostable group.
@article{AL_2013_52_4_a0,
     author = {D. I. Dushenin},
     title = {Abelian $p$-groups and autostability relative to an oracle},
     journal = {Algebra i logika},
     pages = {403--415},
     publisher = {mathdoc},
     volume = {52},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2013_52_4_a0/}
}
TY  - JOUR
AU  - D. I. Dushenin
TI  - Abelian $p$-groups and autostability relative to an oracle
JO  - Algebra i logika
PY  - 2013
SP  - 403
EP  - 415
VL  - 52
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2013_52_4_a0/
LA  - ru
ID  - AL_2013_52_4_a0
ER  - 
%0 Journal Article
%A D. I. Dushenin
%T Abelian $p$-groups and autostability relative to an oracle
%J Algebra i logika
%D 2013
%P 403-415
%V 52
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2013_52_4_a0/
%G ru
%F AL_2013_52_4_a0
D. I. Dushenin. Abelian $p$-groups and autostability relative to an oracle. Algebra i logika, Tome 52 (2013) no. 4, pp. 403-415. http://geodesic.mathdoc.fr/item/AL_2013_52_4_a0/

[1] S. S. Goncharov, Yu. L. Ershov, Konstruktivnye modeli, Sibirskaya shkola algebry i logiki, Nauchnaya kniga, Novosibirsk, 1999

[2] A. G. Kurosh, Teoriya grupp, Nauka, M., 1967 | MR | Zbl

[3] R. Rogers, Theory of recursive functions and effective computability, McGraw-Hill, New York, 1967 ; Kh. Rodzhers, Teoriya rekursivnykh funktsii i effektivnaya vychislimost, Mir, M., 1972 | MR | Zbl | MR

[4] R. I. Soare, Recursively enumerable sets and degrees, Perspect. Math. Log., Omega Series, Springer-Verlag, Heidelberg a.o., 1987 ; R. I. Soar, Vychislimo perechislimye mnozhestva i stepeni, Kazanskoe matem. ob-vo, Kazan, 2000 | MR | MR | Zbl

[5] S. S. Goncharov, V. D. Dzgoev, “Avtoustoichivost modelei”, Algebra i logika, 19:1 (1980), 45–58 | MR | Zbl

[6] R. L. Smith, “Two theorems on autostability in $p$-groups”, Logic Year 1979–80, Lect. Notes Math., 859, Univ. Conn., USA, 1981, 302–311 | DOI | MR | Zbl

[7] C. J. Ash, “Stability of recursive structures in arithmetical degrees”, Ann. Pure Appl. Logic, 32:2 (1986), 113–135 | DOI | MR | Zbl

[8] S. Lempp, Ch. McCoy, R. Miller, R. Solomon, “Computable categoricity of trees of finite height”, J. Symb. Log., 70:1 (2005), 151–215 | DOI | MR | Zbl

[9] D. I. Dushenin, “Otnositelnaya avtoustoichivost pryamykh summ abelevykh $p$-grupp”, Vestn. NGU, Ser. matem., mekh., inform., 10:1 (2010), 29–39 | Zbl

[10] D. I. Dushenin, “Arifmeticheskie izomorfizmy abelevykh $p$-grupp”, Vestn. NGU, Ser. matem., mekh., inform., 13:1 (2013), 47–56

[11] E. Barker, “Back and forth relations for reduced Abelian $p$-groups”, Ann. Pure Appl. Logic, 75:3 (1995), 223–249 | DOI | MR | Zbl

[12] W. Calvert, D. Cenzer, V. S. Harizanov, A. Morozov, “Effective categoricity of Abelian $p$-groups”, Ann. Pure Appl. Logic, 159:1/2 (2009), 187–197 | DOI | MR | Zbl

[13] L. A. Rogers, “Ulm's theorem for partially ordered structures related to simply presented Abelian $p$-groups”, Trans. Am. Math. Soc., 227 (1977), 333–343 | MR | Zbl