Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2013_52_4_a0, author = {D. I. Dushenin}, title = {Abelian $p$-groups and autostability relative to an oracle}, journal = {Algebra i logika}, pages = {403--415}, publisher = {mathdoc}, volume = {52}, number = {4}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2013_52_4_a0/} }
D. I. Dushenin. Abelian $p$-groups and autostability relative to an oracle. Algebra i logika, Tome 52 (2013) no. 4, pp. 403-415. http://geodesic.mathdoc.fr/item/AL_2013_52_4_a0/
[1] S. S. Goncharov, Yu. L. Ershov, Konstruktivnye modeli, Sibirskaya shkola algebry i logiki, Nauchnaya kniga, Novosibirsk, 1999
[2] A. G. Kurosh, Teoriya grupp, Nauka, M., 1967 | MR | Zbl
[3] R. Rogers, Theory of recursive functions and effective computability, McGraw-Hill, New York, 1967 ; Kh. Rodzhers, Teoriya rekursivnykh funktsii i effektivnaya vychislimost, Mir, M., 1972 | MR | Zbl | MR
[4] R. I. Soare, Recursively enumerable sets and degrees, Perspect. Math. Log., Omega Series, Springer-Verlag, Heidelberg a.o., 1987 ; R. I. Soar, Vychislimo perechislimye mnozhestva i stepeni, Kazanskoe matem. ob-vo, Kazan, 2000 | MR | MR | Zbl
[5] S. S. Goncharov, V. D. Dzgoev, “Avtoustoichivost modelei”, Algebra i logika, 19:1 (1980), 45–58 | MR | Zbl
[6] R. L. Smith, “Two theorems on autostability in $p$-groups”, Logic Year 1979–80, Lect. Notes Math., 859, Univ. Conn., USA, 1981, 302–311 | DOI | MR | Zbl
[7] C. J. Ash, “Stability of recursive structures in arithmetical degrees”, Ann. Pure Appl. Logic, 32:2 (1986), 113–135 | DOI | MR | Zbl
[8] S. Lempp, Ch. McCoy, R. Miller, R. Solomon, “Computable categoricity of trees of finite height”, J. Symb. Log., 70:1 (2005), 151–215 | DOI | MR | Zbl
[9] D. I. Dushenin, “Otnositelnaya avtoustoichivost pryamykh summ abelevykh $p$-grupp”, Vestn. NGU, Ser. matem., mekh., inform., 10:1 (2010), 29–39 | Zbl
[10] D. I. Dushenin, “Arifmeticheskie izomorfizmy abelevykh $p$-grupp”, Vestn. NGU, Ser. matem., mekh., inform., 13:1 (2013), 47–56
[11] E. Barker, “Back and forth relations for reduced Abelian $p$-groups”, Ann. Pure Appl. Logic, 75:3 (1995), 223–249 | DOI | MR | Zbl
[12] W. Calvert, D. Cenzer, V. S. Harizanov, A. Morozov, “Effective categoricity of Abelian $p$-groups”, Ann. Pure Appl. Logic, 159:1/2 (2009), 187–197 | DOI | MR | Zbl
[13] L. A. Rogers, “Ulm's theorem for partially ordered structures related to simply presented Abelian $p$-groups”, Trans. Am. Math. Soc., 227 (1977), 333–343 | MR | Zbl